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Preface

This book is aimed at the reader who wishes to gain a working knowledge of time
series and forecasting methods as applied in economics, engineering and the natural
and social sciences. Unlike our earlier book, Time Series: Theory and Methods, re-
ferred to in the text as TSTM, this one requires only a knowledge of basic calculus,
matrix algebra and elementary statistics at the level (for example) of Mendenhall,
Wackerly and Scheaffer (1990). It isintended for upper-level undergraduate students
and beginning graduate students.

The emphasis is on methods and the analysis of data sets. The student version
of the time series package | TSM 2000, enabling the reader to reproduce most of the
calculationsinthetext (and to analyze further data sets of the reader’s own choosing),
isincluded on the CD-ROM which accompanies the book. The data sets used in the
book are also included. The package requiresan | BM-compatible PC operating under
Windows 95, NT version 4.0, or alater version of either of these operating systems.
The program ITSM can berun directly from the CD-ROM or installed on ahard disk
as described at the beginning of Appendix D, where a detailed introduction to the
package is provided.

Very littleprior familiarity with computingisrequiredin order to usethe computer
package. Detailed instructions for its use are found in the on-line help files which
are accessed, when the program ITSM is running, by selecting the menu option
Help>Contents and selecting the topic of interest. Under the heading Data you
will find information concerning the data sets stored on the CD-ROM. The book can
also be used in conjunction with other computer packages for handling time series.
Chapter 14 of the book by Venables and Ripley (1994) describes how to perform
many of the calculations using S-plus.

There are numerous problems at the end of each chapter, many of which involve
use of the programs to study the data sets provided.

To make the underlying theory accessible to a wider audience, we have stated
some of the key mathematical results without proof, but have attempted to ensure
that the logical structure of the development is otherwise complete. (References to
proofs are provided for the interested reader.)
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Preface

Since the upgrade to ITSM2000 occurred after the first edition of this book
appeared, we have taken the opportunity, in this edition, to coordinate the text with
the new software, to make anumber of corrections pointed out by readers of thefirst
edition and to expand on several of the topics treated only briefly in the first edition.

Appendix D, the software tutorial, has been rewritten in order to be compatible
with the new version of the software.

Some of the other extensive changes occur in (i) Section 6.6, which highlights
the role of the innovations algorithm in generalized least squares and maximum
likelihood estimation of regression models with time series errors, (ii) Section 6.4,
where the treatment of forecast functions for ARIMA processes has been expanded
and (iii) Section 10.3, which now includes GARCH modeling and simulation, topics
of considerableimportancein the analysis of financial time series. The new material
has been incorporated into the accompanying software, to which we have also added
the option Autofit. This streamlines the modeling of time series data by fitting
maximum likelihood ARMA (p, ¢) models for a specified range of (p, ¢) valuesand
automatically selecting the model with smallest AICC value.

Thereissufficient material herefor afull-year introduction to univariate and mul-
tivariate time series and forecasting. Chapters 1 through 6 have been used for several
yearsinintroductory one-semester coursesin univariate time series at Colorado State
University and Royal Melbourne Institute of Technology. The chapter on spectral
analysis can be excluded without loss of continuity by readers who are so inclined.

Wearegreatly indebted to thereadersof thefirst edition and especially to Matthew
Calder, coauthor of the new computer package, and Anthony Brockwell for their
many valuable comments and suggestions. We also wish to thank Colorado State
University, the National Science Foundation, Springer-Verlag and our families for
their continuing support during the preparation of this second edition.

Fort Collins, Colorado Peter J. Brockwell
August 2001 Richard A. Davis
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Introduction

Examples of Time Series

Obijectives of Time Series Analysis

Some Simple Time Series Models

Stationary Models and the Autocorrelation Function

Estimation and Elimination of Trend and Seasonal Components
Testing the Estimated Noise Sequence

— ) —) —) )
SRR

In this chapter we introduce some basic ideas of time series analysis and stochastic
processes. Of particul arimportancearethe conceptsof stationarity and theautocovari-
ance and sample autocovariance functions. Some standard techniques are described
for the estimation and removal of trend and seasonality (of known period) from an
observed time series. These areillustrated with reference to the data sets in Section
1.1. Thecalculationsin all the examples can be carried out using the time series pack-
age| TSM, the student version of which issupplied on the enclosed CD. The data sets
are contained in files with names ending in .TSM. For example, the Australian red
wine sales are filed as WINE.TSM. Most of the topics covered in this chapter will
be developed more fully in later sections of the book. The reader who is not aready
familiar with random variables and random vectors should first read Appendix A,
where a concise account of the required background is given.

1.1 Examples of Time Series

A timeseriesisaset of observations x,, each one being recorded at a specific time:.
A discrete-time time series (the type to which this book is primarily devoted) is one
in which the set Ty of times at which observations are made is adiscrete set, asisthe
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The Australian red wine
sales, Jan. ‘80 — Oct. ‘91.

Example 1.1.1

Example 1.1.2

1 1 1 1 1 1 1 1 1 1 1
1982 1984 1986 1988 1990 1992

case, for example, when observations are made at fixed time intervals. Continuous-
time time series are obtai ned when observations are recorded continuously over some
timeinterval, e.g., when 7, = [0, 1].

Australian red wine sales; WINE.TSM

Figure 1.1 showsthemonthly sales (in kiloliters) of red wine by Australian winemak-
ers from January 1980 through October 1991. In this case the set T, consists of the
142 times {(Jan. 1980), (Feb. 1980), ...,(Oct. 1991)}. Given a set of n observations
made at uniformly spaced time intervals, it is often convenient to rescale the time
axis in such a way that To becomes the set of integers {1, 2, .. ., n}. In the present
exampl e thisamountsto measuring timein monthswith (Jan. 1980) asmonth 1. Then
Tyistheset {1, 2, ..., 142}. It appears from the graph that the sales have an upward
trend and a seasonal pattern with a peak in July and atrough in January. To plot the
data using ITSM, run the program by double-clicking on the ITSM icon and then
select the option File>Project>0pen>Univariate, click OK, and select the file
WINE.TSM. The graph of the data will then appear on your screen. O

All-star baseball games, 1933-1995
Figure 1.2 shows the results of the all-star games by plotting x;, where

1 if theNationa Leaguewoninyear ,

Xy =

—1 if the American League wonin year 7.
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Figure 1-2
Results of the
all-star baseball
games, 1933-1995.

Example 1.1.3

Example 1.1.4

| I
Nl

| | | | | | | | | | |
1940 1950 1960 1970 1980 1990

Thisis a series with only two possible values, 1. It also has some missing values,
since no game was played in 1945, and two games were scheduled for each of the
years 1959-1962. O

Accidental deaths, U.S.A., 1973-1978; DEATHS.TSM

Like the red wine sales, the monthly accidental death figures show a strong seasonal
pattern, with the maximum for each year occurring in July and the minimum for each
year occurring in February. The presence of atrendin Figure 1.3 ismuch less apparent
than in the wine sales. In Section 1.5 we shall consider the problem of representing
the data as the sum of atrend, a seasonal component, and aresidual term. O

A signal detection problem; SIGNAL.TSM

Figure 1.4 shows simulated values of the series

X, = cos(lt—o) N, 1=12,...,200,
where {N,} is a sequence of independent normal random variables, with mean O
and variance 0.25. Such a series is often referred to as signal plus noise, the signal
being the smooth function, S, = cos(+5) in this case. Given only the data X,, how
can we determine the unknown signal component? There are many approaches to
this general problem under varying assumptions about the signal and the noise. One
simple approach is to smooth the data by expressing X, as a sum of sine waves of
variousfrequencies(see Section 4.2) and eliminating the high-frequency components.
If we do this to the values of {X,} shown in Figure 1.4 and retain only the lowest
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3.5% of the frequency components, we obtain the estimate of the signal also shown
in Figure 1.4. The waveform of the signal is quite close to that of the true signal in
this case, although its amplitude is somewhat smaller. O

Example 1.1.5  Population of the U.S.A., 1790-1990; USPOP.TSM

The population of the U.S.A., measured at ten-year intervals, is shown in Figure 1.5.
The graph suggests the possibility of fitting a quadratic or exponential trend to the
data. We shall explore this further in Section 1.3. O

Example 1.1.6  Number of strikes per year in the U.S.A., 1951-1980; STRIKES.TSM

The annual numbers of strikes in the U.S.A. for the years 1951-1980 are shown in
Figure 1.6. They appear to fluctuate erratically about a slowly changing level. O

1.2 Obijectives of Time Series Analysis

The examples considered in Section 1.1 are an extremely small sample from the
multitude of time series encountered in the fields of engineering, science, sociology,
and economics. Our purposein thisbook isto study techniquesfor drawing inferences
fromsuch series. Beforewecandothis, however, itisnecessary to set up ahypothetical
probability model to represent the data. After an appropriate family of models has
been chosen, it is then possible to estimate parameters, check for goodness of fit to
the data, and possibly to use the fitted model to enhance our understanding of the
mechanism generating the series. Once a satisfactory model has been developed, it
may be used in avariety of ways depending on the particular field of application.
The model may be used simply to provide a compact description of the data. We
may, for example, be able to represent the accidental deaths data of Example 1.1.3 as
the sum of a specified trend, and seasonal and random terms. For the interpretation
of economic statistics such as unemployment figures, it isimportant to recognize the
presence of seasonal components and to remove them so as not to confuse them with
long-term trends. This process is known as seasonal adj ustment. Other applications
of time series models include separation (or filtering) of noise from signals as in
Example 1.1.4, prediction of future values of a series such as the red wine salesin
Example 1.1.1 or the population data in Example 1.1.5, testing hypotheses such as
globa warming using recorded temperature data, predicting one series from obser-
vations of another, e.g., predicting future sales using advertising expenditure data,
and controlling future values of a series by adjusting parameters. Time series models
are also useful in simulation studies. For example, the performance of a reservoir
depends heavily on the random daily inputs of water to the system. If these are mod-
eled as a time series, then we can use the fitted model to simulate a large number
of independent sequences of daily inputs. Knowing the size and mode of operation
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of the reservoir, we can determine the fraction of the simulated input sequences that
cause the reservoir to run out of water in agiven time period. This fraction will then
be an estimate of the probability of emptiness of the reservoir at some time in the
given period.

1.3 Some Simple Time Series Models

Definition 1.3.1

An important part of the analysis of atime seriesis the selection of a suitable proba-
bility model (or class of models) for the data. To allow for the possibly unpredictable
nature of future observations it is natural to suppose that each observation x; is a
realized value of a certain random variable X,.

A time series modd for the observed data {x,} is a specification of the joint
distributions(or possibly only the means and covariances) of asequence of random
variables {X,} of which {x;} is postulated to be arealization.

Remark. We shall frequently use the term time series to mean both the data and
the process of which it is arealization. O

A complete probabilistic time series model for the sequence of random vari-
ables{X,, X,, ...} would specify al of thejoint distributions of the random vectors
(X1, ..., X,),n=12,..., orequivaently al of the probabilities

P[X1<x1,...,X, <x,], —00<x1,...,x, <00, n=212....

Suchaspecificationisrarely used intimeseriesanalysis (unlessthe dataare generated
by some well-understood simple mechanism), sincein genera it will contain far too
many parametersto be estimated from the available data. Instead we specify only the
first- and second-order moments of the joint distributions, i.e., the expected values
E X, and the expected products E(X,.,X,),t = 1,2,...,h =0,1,2,..., focusing
on properties of the sequence {X,} that depend only on these. Such propertiesof {X;}
arereferred to as second-order properties. In the particular case where all the joint
distributions are multivariate normal, the second-order properties of {X,;} completely
determine the joint distributions and hence give a complete probabilistic characteri-
zation of the sequence. In general we shall lose a certain amount of information by
looking at time series “through second-order spectacles’; however, as we shall see
in Chapter 2, the theory of minimum mean squared error linear prediction depends
only on the second-order properties, thus providing further justification for the use
of the second-order characterization of time series models.

Figure 1.7 showsone of many possibleredlizationsof {S;, s = 1, ..., 200}, where
{S,} is a sequence of random variables specified in Example 1.3.3 below. In most
practical problems involving time series we see only one redlization. For example,
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Example 1.3.1

Example 1.3.2

there is only one available realization of Fort Collins's annual rainfall for the years
1900-1996, but we imagine it to be one of the many sequences that might have
occurred. In the following examples we introduce some simple time series models.
One of our goalswill beto expand this repertoire so asto have at our disposal abroad
range of models with which to try to match the observed behavior of given data sets.

1.3.1 Some Zero-Mean Models

iid noise

Perhaps the simplest model for a time series is one in which there is no trend or
seasonal component and in which the observations are simply independent and iden-
tically distributed (iid) random variableswith zero mean. Werefer to such asequence
of random variables X1, X,, ... as iid noise. By definition we can write, for any
positive integer n and real numbers x, . . ., x,,

P[lexlvu-,Xn fxn]:P[lexl]"'P[Xnan]:F(xl)"'F(xn)’

where F(-) is the cumulative distribution function (see Section A.1) of each of
the identically distributed random variables X, X», .... In this model there is no
dependence between observations. In particular, for al 2 > Land all x, x4, ..., x,,

P[XrH—h =< x|Xl = X1, aXn :xn] = P[XrH—h =< X],

showing that knowledge of X, ..., X, is of no value for predicting the behavior
of X,,,. Given the values of X4, ..., X,, the function f that minimizes the mean
squared error E[(X,n — f(X1. ..., X,))?] isin fact identically zero (see Problem
1.2). Although this meansthat iid noise is arather uninteresting process for forecast-
ers, it plays an important role as a building block for more complicated time series
models. O

A binary process

As an example of iid noise, consider the sequence of iid random variables {X,, r =
1,2 ...,}with

P[X, =1 =p, P[X,=-1=1-p,

where p = % The time series obtained by tossing a penny repeatedly and scoring
+1 for each head and —1 for each tail is usually modeled as a realization of this
process. A priori we might well consider the same process as amodel for the all-star
baseball gamesin Example 1.1.2. However, even a cursory inspection of the results
from 1963-1982, which show the National League winning 19 of 20 games, casts
serious doubt on the hypothesis P[ X, = 1] = % O
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Example 1.3.3

Figure 1-7

One realization of a
simple random walk
{S,t=0,1,2,...,200}

Random walk

Therandomwak {S;,t = 0,1, 2, ...} (starting at zero) is obtained by cumulatively
summing (or “integrating”) iid random variables. Thusarandom walk with zero mean
is obtained by defining S, = 0 and

S=X1+Xo+---+X,, forr=12,...,

where {X,} isiid noise. If {X,} isthe binary process of Example 1.3.2, then {S;, t =
0,12, ...,}iscaled asimple symmetric random walk. Thiswalk can be viewed
as the location of a pedestrian who starts at position zero at time zero and at each
integer time tosses afair coin, stepping one unit to the right each time a head appears
and oneunit to theleft for each tail. A realization of length 200 of asimple symmetric
random walk is shown in Figure 1.7. Notice that the outcomes of the coin tosses can
be recovered from {S;,r = 0, 1, ...} by differencing. Thus the result of the rth toss
can befound from S, — S,_1 = X,. O

1.3.2 Models with Trend and Seasonality

In severd of thetime series examples of Section 1.1 thereisaclear trend in the data.
An increasing trend is apparent in both the Australian red wine sales (Figure 1.1)
and the population of the U.S.A. (Figure 1.5). In both cases a zero-mean model for
the datais clearly inappropriate. The graph of the population data, which contains no
apparent periodic component, suggests trying amodel of the form

X, =m + Y,
i II"'H ] nn
a - GiIp I'l‘ll ] n H‘!‘H L] ll‘!‘\l
nin) ll‘llﬂﬂll‘! 1) ll‘ll QI T GiIp
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where m;, is asowly changing function known as the trend component and Y, has
zeromean. A useful technique for estimating m, isthe method of least squares (some
other methods are considered in Section 1.5).
In the least squares procedure we attempt to fit aparametric family of functions,
eg.,
m, = ao + ait + axt?, (1.3.1)

tothedata{xy, ..., x,} by choosing the parameters, inthisillustration ag, a;, and a,, to
minimize >""_, (x, —m,)2. Thismethod of curvefittingiscalled |east squaresregres-
sion and can be carried out using the program ITSM and selecting the Regression
option.

Population of the U.S.A., 1790-1990

To fit a function of the form (1.3.1) to the population data shown in Figure 1.5 we
relabel the time axis so that + = 1 corresponds to 1790 and ¢ = 21 corresponds to
1990. Run ITSM, select File>Project>0pen>Univariate, and open the file US-
POPTSM. Then select Regression>Specify, choose Polynomial Regression
with order equal to 2, and click OK. Then select Regression>Estimation>Least
Squares, and you will obtain the following estimated parameter valuesin the model
(2.3.2):

dp = 6.9579 x 10°,

41 = —2.1599 x 10°,
and

a, = 6.5063 x 10°.

A graph of the fitted function is shown with the original data in Figure 1.8. The
estimated values of the noise process Y;, 1 < ¢t < 21, are the residuals obtained by
subtraction of /i, = ag + ast + ast? from x,.

The estimated trend component 1z, furnishes uswith anatural predictor of future
values of X,. For example, if we estimate the noise Y», by its mean value, i.e., zero,
then (1.3.1) gives the estimated U.S. population for the year 2000 as

g = 6.9579 x 10° — 2.1599 x 10° x 22 + 6.5063 x 10° x 22% = 274.35 x 10°.
However, if theresiduals{Y,} are highly correlated, we may be ableto usetheir values
to give abetter estimate of Y,, and hence of the population X, intheyear 2000. O
Level of Lake Huron 1875-1972; LAKE.DAT

A graph of the level in feet of Lake Huron (reduced by 570) in the years 1875-1972
isdisplayed in Figure 1.9. Since the lake level appearsto decline at aroughly linear
rate, ITSM was used to fit amodel of the form

X, =ap+ait +Y;, tr=1,...,98 (132)



1.3

Some Simple Time Series Models 11

Figure 1-8

Population of the U.S.A.
showing the quadratic trend
fitted by least squares.

Figure 1-9

Level of Lake Huron
1875-1972 showing the
line fitted by least squares.
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(with thetime axisrelabeled asin Example 1.3.4). The least squares estimates of the
parameter values are

ap=10.202 and a; = —.0242.

(The resulting least squares line, ap + ait, is aso displayed in Figure 1.9.) The
estimatesof thenoise, Y;,inthemodel (1.3.2) aretheresidual sobtained by subtracting
the least squareslinefrom x, and are plotted in Figure 1.10. There are two interesting
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Figure 1-10
Residuals from fitting a
line to the Lake Huron

data in Figure 1.9.
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features of the graph of the residuals. Thefirst isthe absence of any discernibletrend.
The second is the smoothness of the graph. (In particular, there are long stretches of
residual sthat havethe same sign. Thiswould be very unlikely to occur if theresiduals
were observations of iid noise with zero mean.) Smoothness of the graph of atime
seriesisgenerally indicative of the existence of some form of dependence among the
observations.

Such dependence can be used to advantage in forecasting future values of the
series. If wewereto assumethevalidity of thefitted model withiidresiduals{Y,}, then
the minimum mean squared error predictor of the next residual (Yg9) would be zero
(by Problem 1.2). However, Figure 1.10 strongly suggests that Yoo will be positive.

How then do we quantify dependence, and how do we construct modelsfor fore-
casting that incorporate dependence of aparticul ar type? To deal with these questions,
Section 1.4 introduces the autocorrel ation function as a measure of dependence, and
stationary processes as afamily of useful models exhibiting awide variety of depen-
dence structures. O

Harmonic Regression

Many time seriesareinfluenced by seasonally varying factors such asthe weather, the
effect of which can be model ed by a periodic component with fixed known period. For
example, the accidental deaths series (Figure 1.3) shows a repeating annual pattern
with peaks in July and troughs in February, strongly suggesting a seasonal factor
with period 12. In order to represent such a seasonal effect, allowing for noise but
assuming no trend, we can use the simple modd,

X, =s5+Y,
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Example 1.3.6

Figure 1-11

The estimated harmonic
component of the
accidental deaths

data from ITSM.

wheres, isaperiodic function of ¢ with period d (s;_, = s,). A convenient choicefor
s, isasum of harmonics (or sine waves) given by

k
si=ao+ Y _(a;COS(A;t) + b, SN(h;1)), (1.3.3)
j=1
whereao, ai, ..., a, and by, ..., by areunknown parametersand A4, ..., A, arefixed

frequencies, each being some integer multiple of 2z /d. To carry out harmonic re-
gressionusing ITSM, select Regression>Specify and check Include intercept
term and Harmonic Regression. Then specify the number of harmonics (k in
(1.3.3)) and enter k integer-valued Fourier indices fi, ..., fi. For asine wave with
period d, set f; = n/d, where n isthe number of observationsin the time series. (If
n/d isnot an integer, you will need to delete afew observations from the beginning
of the seriesto makeit so.) The other k — 1 Fourier indices should be positive integer
multiples of thefirst, corresponding to harmonics of the fundamental sine wave with
period d. Thusto fit asingle sine wave with period 365 to 365 daily observations we
would choosek = 1and f; = 1. Tofitalinear combination of sinewaveswith periods
365/j,j=1,...,4, wewouldchoosek =4and f; = j, j =1,...,4. Oncek and
f1, ..., fx have been specified, click OK and then select Regression>Estimation
>Least Squares to obtain the required regression coefficients. To see how well the
fitted function matches the data, select Regression>Show fit.

Accidental deaths

To fit a sum of two harmonics with periods twelve months and six months to the
monthly accidental deaths data xi, ..., x, withn = 72, we choose k = 2, f1 =

10
T

(thousands)
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n/12 =6, and f, = n/6 = 12. Using ITSM as described above, we obtain the fitted
function shown in Figure 1.11. As can be seen from the figure, the periodic character
of the seriesis captured reasonably well by thisfitted function. In practice, it isworth
experimenting with several different combinations of harmonicsin order to find asat-
isfactory estimate of the seasonal component. The program ITSM also allowsfitting
alinear combination of harmonicsand polynomial trend by checking both Harmonic
Regression and Polynomial Regression in the Regression>Specification
dialog box. Other methods for dealing with seasonal variation in the presence of
trend are described in Section 1.5. O

1.3.3 A General Approach to Time Series Modeling

The examples of the previous section illustrate a general approach to time series
analysis that will form the basis for much of what is done in this book. Before
introducing the ideas of dependence and stationarity, we outline this approach to
provide the reader with an overview of the way in which the various ideas of this
chapter fit together.

e Plot the series and examine the main features of the graph, checking in particular
whether thereis
(a) atrend,
(b) a seasonal component,
(c) any apparent sharp changesin behavior,
(d) any outlying observations.

e Removethetrend and seasonal componentsto get stationary residuals (as defined
in Section 1.4). To achieve this goal it may sometimes be necessary to apply a
preliminary transformation to the data. For example, if the magnitude of the
fluctuations appears to grow roughly linearly with the level of the series, then
thetransformed series {In X4, ..., In X,,} will have fluctuations of more constant
magnitude. See, for example, Figures 1.1 and 1.17. (If some of the data are
negative, add a positive constant to each of the data values to ensure that all
values are positive before taking logarithms.) There are several ways in which
trend and seasonality can beremoved (see Section 1.5), someinvolving estimating
the components and subtracting them from the data, and others depending on
differencing the data, i.e., replacing the original series{X,} by {Y; := X, — X,_4}
for some positive integer d. Whichever method is used, the aim is to produce a
stationary series, whose values we shall refer to as residuals.

e Choose a model to fit the residuals, making use of various sample statistics in-
cluding the sample autocorrelation function to be defined in Section 1.4.

e Forecasting will be achieved by forecasting the residuals and then inverting the
transformations described above to arrive at forecasts of the original series {X,}.
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e Anextremely useful alternative approach touched on only briefly in this book is
to express the series in terms of its Fourier components, which are sinusoidal
waves of different frequencies (cf. Example 1.1.4). This approach is especially
important in engineering applications such as signal processing and structural
design. It isimportant, for example, to ensure that the resonant frequency of a
structure does not coincide with a frequency at which the loading forces on the
structure have a particularly large component.

1.4 Stationary Models and the Autocorrelation Function

Loosely speaking, atimeseries{X,,r = 0, 1, ...} issaidtobestationary if it hassta-
tistical properties similar to those of the “time-shifted” series {X,,,,t =0, £1, ...},
for each integer h. Restricting attention to those properties that depend only on the
first- and second-order moments of {X,}, we can make this idea precise with the
following definitions.

Definition 1.4.1 Let {X,} beatime serieswith E(X?) < co. Themean function of {X,} is
px(t) = E(X)).

The covariance function of {X,} is
yx(r,s) = Cov(X,, X;) = E[(X, — ux(n)(Xy — nx(s))]

for al integersr and s.

Definition 1.4.2 {X,}is(weakly) stationary if
(i) ux(r) isindependent of ¢,
and

(i) yx(t + h, r) isindependent of ¢ for each 4.

Remark 1. Strict stationarity of atimeseries {X,,r = 0, &1, ...} isdefined by the
condition that (X4, ..., X,) and (X144, ..., X,4) have the same joint distributions
for all integersh and n > 0. It is easy to check that if {X,} is strictly stationary and
EX? < oo foral t, then {X,} is also weakly stationary (Problem 1.3). Whenever we
usetheterm stationary we shall mean weakly stationary asin Definition 1.4.2, unless
we specifically indicate otherwise. O

Remark 2. Inview of condition (ii), whenever we use the term covariance function
with reference to a stationary time series {X;} we shall mean the function yx of one
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variable, defined by
yx(h) = yx(h,0) = yx( + h,1).

Thefunction yx (-) will be referred to as the autocovariance function and yy (k) asits
value at lag h. O

Let {X,} be a stationary time series. The autocovariance function (ACVF) of
(X, }atlaghis

yx(h) = COV(X[+]1, Xz)
The autocorrelation function (ACF) of {X,} atlag h is

yx(h)

= Cor(X,.n, X,).
v (0) or(X;4n, X;)

px(h) =

In the following examples we shall frequently use the easily verified linearity prop-
erty of covariances, that if EX? < 0o, EY? < 00, EZ? < oo and a, b, and ¢ are any
real constants, then

Cov(aX +bY +c¢,Z) =aCov(X, Z)+ bCov(Y, Z).

iid noise

If {X,} isiid noise and E(X?) = 02 < oo, then the first requirement of Definition
1.4.2isobvioudy satisfied, since E(X,) = Ofor al ¢. By the assumed independence,
o? ifh=0,

yx(1+h,t): .
0, ifh#£0,

which does not depend on . Hence iid noise with finite second moment is stationary.
We shall use the notation

{X;} ~ 11D (0, 0%

to indicate that the random variables X, are independent and identically distributed
random variables, each with mean 0 and variance o-2. a

White noise

If {X,} is a sequence of uncorrelated random variables, each with zero mean and
variance o2, then clearly {X,} is stationary with the same covariance function as the
iid noisein Example 1.4.1. Such asequence isreferred to as white noise (with mean
0 and variance o'2). Thisisindicated by the notation

{X;} ~WN(0,07).
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Clearly, every 11D(0, 0-2) sequenceisWN(0, o-?) but not conversely (see Problem 1.8
and the ARCH(1) process of Section 10.3). O
Example 1.4.3  The random walk
If {S,} isthe random walk defined in Example 1.3.3 with {X,} asin Example 1.4.1,
then ES, = 0, E(S?) = to? < oo for al ¢, and, for 2 > 0,
ys(t +h,t) = Cov(S,4n, Si)
= COV(Sz + Xt+1 +- Xz-&-h» Sz)
= COV(S,, S
=to?.
Since ys(t + h, t) depends on ¢, the series {S;} is not stationary. O
Example 1.4.4  First-order moving average or MA(1) process

Example 1.4.5

Consider the series defined by the equation
X, =2Z,+6Z,_1, t=0,%1, ..., (14.2)

where {Z,} ~ WN (0, 62) and ¢ is areal-valued constant. From (1.4.1) we see that
EX, =0, EX? = 02(1+6?) < oo, and

02(1—|—92), if h =0,
yx(@t+h, 1) =1 0%, if h = +1,
0, if |h| > 1.

Thus the requirements of Definition 1.4.2 are satisfied, and {X,} is stationary. The
autocorrelation function of {X,} is

1, if h =0,
px(h)=16/(1+6%, ifh==1, a
0, if |h] > 1.

First-order autoregression or AR(1) process
Let usassume now that {X,} is a stationary series satisfying the equations
X, =¢X, 1+ 2, t=0,%£1 ..., (2.4.2)

where{Z,} ~ WN(0, 0?), |¢| < 1, and Z, isuncorrelated with X, for eachs < ¢. (We
shall show in Section 2.2 that there isin fact exactly one such solution of (1.4.2).) By
taking expectations on each side of (1.4.2) and using the fact that EZ, = 0, we see
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at once that
EX, =0.

To find the autocorrelation function of {X,} we multiply each side of (1.4.2) by X,_,
(h > 0) and then take expectations to get

yx(h) = Cov(X,, X,_;)
= Cov(¢X,_1, X;—p) + Cov(Z;, X,_p)
=¢yx(h—1)+0=---=¢"y,(0).

Observing that y (k) = y (—h) and using Definition 1.4.3, we find that

_ yx(h) _

W h=0,41,....
yx(o) ¢ ’ ’ )

px(h)

It follows from the linearity of the covariance function in each of its arguments and
the fact that Z, is uncorrelated with X,_, that

yx(0) = Cov(X,, X,) = COV($pX,-1+ Z,, $X,-1+ Z,) = $*yx(0) + o°

and hence that yx (0) = 02/ (1 — ¢?). O

1.4.1 The Sample Autocorrelation Function

Although we have just seen how to compute the autocorrelation function for a few
simple time series models, in practical problems we do not start with a model, but
with observed data {x1, x», ..., x,}. To assess the degree of dependence in the data
and to select a model for the data that reflects this, one of the important tools we
use isthe sample autocor relation function (sample ACF) of the data. If we believe
that the data are realized values of a stationary time series {X,}, then the sample
ACF will provide uswith an estimate of the ACF of {X,}. This estimate may suggest
which of the many possible stationary time series modelsis a suitable candidate for
representing the dependence in the data. For example, a sample ACF that is close
to zero for al nonzero lags suggests that an appropriate model for the data might
beiid noise. The following definitions are natural sample analogues of those for the
autocovariance and autocorrel ation functions given earlier for stationary time series
models.
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Definition 1.4.4

Figure 1-12
200 simulated values
of iid N(0,1) noise.

Let x4, ..., x, beobservations of atime series. The samplemean of xg, ..., x, is
1
X = — X,.

The sample autocovariance function is

n—|h|
Py i=nt Y (p — D) — %), —n<h<n.
=1

The sample autocorrelation function is

_ 9
70’

-n<h<n.

p(h)

Remark 3. For h > 0, y(h) is approximately equal to the sample covariance of
the n — h pairs of observations (x1, x1.1), (x2, X241, . . ., (X,—p, x,). The difference
arises from use of the divisor n instead of n — /4 and the subtraction of the overall
mean, x, from each factor of the summands. Use of the divisor n ensures that the
sample covariance matrix I, := [} (i — NI} j—1 is nonnegative definite (see Section
2.4.2). O

Remark 4. Like the sample covariance matrix defined in Remark 3, the sample
correlation matrix R, := [p(i — j)]} ;—; is nonnegative definite. Each of its diagonal
elementsisequal to 1, since p(0) = 1. O

[n]

1 ]
150 200
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Figure 1-13

The sample autocorrelation
function for the data of
Figure 1.12 showing

the bounds +1.96/./n.

Figure 1.12 shows 200 simulated values of normally distributed iid (0, 1), denoted
by 11D N(O, 1), noise. Figure 1.13 shows the corresponding sample autocorrelation
function at 1ags 0, 1, . . ., 40. Since p(h) = 0 for & > 0, one would aso expect the
corresponding sampleautocorrel ationsto benear 0. It canbeshown, infact, that foriid
noisewithfinite variance, the sample autocorrelations p (h), 1 > 0, areapproximately
IID N(O, 1/n) for n large (see TSTM p. 222). Hence, approximately 95% of the
sample autocorrelations should fall between the bounds +1.96/,/n (since 1.96 is
the .975 quantile of the standard normal distribution). Therefore, in Figure 1.13 we
would expect roughly 40(.05) = 2 valuesto fall outside the bounds. To simulate 200
values of 11D N(0, 1) noise using ITSM, select File>Project>New>Univariate
thenModel>Simulate. Intheresulting dialog box, enter 200 for the required Number
of Observations. (Theremaining entriesin the dialog box can be left asthey are,
since the model assumed by ITSM, until you enter ancther, is11D N(O, 1) noise. If
you wish to reproduce exactly the same sequence at alater date, record the Random
Number Seed for later use. By specifying different values for the random number
seed you can generate independent realizations of your time series.) Click on 0K and
you will see the graph of your simulated series. To see its sample autocorrelation
function together with the autocorrelation function of the model that generated it,
click on the third yellow button at the top of the screen and you will see the two
graphs superimposed (with the latter in red.) The horizontal lines on the graph are
the bounds +£1.96/./n. a

Remark 5. The sample autocovariance and autocorrelation functions can be com-
puted for any data set {xi, ..., x,} and are not restricted to observations from a
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Figure 1-14
The sample autocorrelation
function for the Australian

red wine sales showing
the bounds 4:1.96/./n.
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stationary time series. For data containing atrend, |o(4)| will exhibit slow decay as
h increases, and for data with a substantial deterministic periodic component, |p (k)|
will exhibit similar behavior with the same periodicity. (See the sasmple ACF of the
Australian red wine sales in Figure 1.14 and Problem 1.9.) Thus p(-) can be useful
as an indicator of nonstationarity (see al'so Section 6.1). O

1.4.2 A Model for the Lake Huron Data

Asnoted earlier, aniid noise model for theresiduals{ys, ..., yeg} Obtained by fitting
astraight line to the Lake Huron datain Example 1.3.5 appears to be inappropriate.
Thisconclusionisconfirmed by the sample ACF of theresiduals (Figure 1.15), which
has three of the first forty values well outside the bounds +1.96/+/98.

The roughly geometric decay of the first few sample autocorrelations (with
oh + 1)/p(h) ~ 0.7) suggests that an AR(1) series (with ¢ ~ 0.7) might pro-
vide a reasonable model for these residuals. (The form of the ACF for an AR(1)
process was computed in Example 1.4.5.)

To explore the appropriateness of such a model, consider the points (y1, y»),
(y2, ¥3), - - ., (ye7, yog) plotted in Figure 1.16. The graph does indeed suggest alinear
relationship between y, and y, ;. Using simpleleast squares estimationtofit astraight
line of the form y, = ay,_1, we obtain the model

Y, = .791Y, 1 + Z,, (1.4.3)

where {Z,} isiid noise with variance Y%, (y, — .791y,_1)%/97 = .5024. The sample
ACF of the estimated noise sequence z;, = y, — .791y,_1,t = 2, ..., 98, isdightly
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Figure 1-15
The sample autocorrelation
function for the Lake
Huron residuals of , , , , |
Figure 1.10 showing 0 10 20 30 40
the bounds £1.96//n. Lag

0

-0.2

outside the bounds +1.96/+/97 at lag 1 (p(1) = .216), but it isinside the bounds for
all other lags up to 40. This check that the estimated noise sequenceis consistent with
theiid assumption of (1.4.3) reinforces our belief in the fitted model. More goodness
of fit tests for iid noise sequences are described in Section 1.6. The estimated noise
sequence {z,} in thisexample passesthem al, providing further support for the model
(1.4.3).

Figure 1-16

Scatter plot of

(Vee1, Y0, t=2,...,98,
for the data in Figure 1.10
showing the least squares
regression line y = .791x.
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A better fit to the residuals in equation (1.3.2) is provided by the second-order
autoregression

Y, = ¢1Yt—l + ¢2Yt—2 + Z,, (144)

where {Z,} is iid noise with variance o2. This is analogous to a linear model in
which Y; isregressed on the previoustwo values Y,_; and Y,_, of thetime series The
least squares estimates of the parameters 1 and ¢,, found by minimizing Z, 3(y,
qbly, e ¢2y, 2)?, are gbl = 1.002 and ¢>2 = —.2834. The estimate of o2 is 62 =
Z, 3O — ¢>1yt 11— ¢>2y, 2)?/96 = .4460, which is approximately 11% smaller than
the estimate of the noise variance for the AR(1) model (1.4.3). The improved fit is
indicated by the sample ACF of the estimated residuals, y, — ¢1y,_1 — ¢2y,_», Which
fallswell within the bounds +1.96/+/96 for all lags up to 40.

1.5 Estimation and Elimination of Trend and Seasonal Components

The first step in the analysis of any time seriesis to plot the data. If there are any
apparent discontinuities in the series, such as a sudden change of level, it may be
advisable to analyze the series by first breaking it into homogeneous segments. If
there are outlying observations, they should be studied carefully to check whether
there is any justification for discarding them (as for example if an observation has
been incorrectly recorded). Inspection of a graph may also suggest the possibility
of representing the data as aredlization of the process (the classical decomposition
model)

Xe=mi+s + Y, (1.5.1)

wherem, isaslowly changing function known asatrend component, s, isafunction
with known period d referred to as aseasonal component, and ¥, isarandom noise
component that isstationary in the sense of Definition 1.4.2. If the seasonal and noise
fluctuations appear to increase with the level of the process, then apreliminary trans-
formation of the data is often used to make the transformed data more compatible
with the model (1.5.1). Compare, for example, the red wine salesin Figure 1.1 with
thetransformed data, Figure 1.17, obtained by applying alogarithmic transformation.
The transformed data do not exhibit the increasing fluctuation with increasing level
that was apparent in the original data. This suggests that the model (1.5.1) is more
appropriate for the transformed than for the original series. In this section we shall
assume that the model (1.5.1) is appropriate (possibly after a preliminary transfor-
mation of the data) and examine some techniques for estimating the components m;
s;, and Y, in the model.

Our aim is to estimate and extract the deterministic components m, and s, in
the hope that the residual or noise component ¥; will turn out to be a stationary time
series. We can then use the theory of such processesto find a satisfactory probabilistic
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Figure 1-17
The natural logarithms
of the red wine data.
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model for the process Y,, to analyze its properties, and to use it in conjunction with
m, and s, for purposes of prediction and simulation of {X,}.

Another approach, devel oped extensively by Box and Jenkins (1976), isto apply
differencing operators repeatedly to the series { X, } until the differenced observations
resemble arealization of some stationary time series{W,}. We can then use the theory
of stationary processes for the modeling, analysis, and prediction of {W,} and hence
of theoriginal process. The various stages of this procedurewill bediscussed in detail
in Chapters 5 and 6.

The two approaches to trend and seasonality removal, (1) by estimation of m;,
and s, in (1.5.1) and (2) by differencing the series { X,}, will now be illustrated with
reference to the data introduced in Section 1.1.

1.5.1 Estimation and Elimination of Trend in the Absence of Seasonality

In the absence of a seasonal component the model (1.5.1) becomes the following.

Nonseasonal M odel with Trend:
X, =m+Y, t=1...,n, (1.5.2)

where EY, = 0.

(If EY, # 0, then we can replace m, and Y, in (1.5.2) withm, + EY, and ¥, — EY,,
respectively.)
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Example 1.5.1

Method 1: Trend Estimation

Moving average and spectral smoothing are essentially nonparametric methods for
trend (or signal) estimation and not for model building. Special smoothing filters can
al so bedesigned to remove periodic componentsasdescribed under Method S1 bel ow.
The choice of smoothing filter requires a certain amount of subjective judgment, and
it is recommended that a variety of filters be tried in order to get a good idea of the
underlying trend. Exponential smoothing, since it is based on a moving average of
past values only, is often used for forecasting, the smoothed value at the present time
being used as the forecast of the next value.

To construct a model for the data (with no seasonality) there are two genera
approaches, both availablein ITSM. Oneistofit apolynomial trend (by least squares)
as described in Method 1(d) below, then to subtract the fitted trend from the data and
to find an appropriate stationary time series model for the residuals. The other is
to eliminate the trend by differencing as described in Method 2 and then to find an
appropriate stationary model for the differenced series. The latter method has the
advantage that it usually requires the estimation of fewer parameters and does not
rest on the assumption of atrend that remainsfixed throughout the observation period.
The study of the residuals (or of the differenced series) istaken up in Section 1.6.

(8 Smoothing with a finite moving average filter. Let g be a nonnegative
integer and consider the two-sided moving average

q
Wo=@2¢+D7" ) X, (1.5.3)

j=—q

of the process {X,} defined by (1.5.2). Thenforg +1 <1 <n —gq,

q q
Wo=Q2+D" ) mj+Cg+D ) Y ~m, (1.5.4)
j==q j==q
assuming that m, is approximately linear over theinterval [r — g, t + ¢] and that the
average of the error terms over thisinterval is close to zero (see Problem 1.11).
The moving average thus provides us with the estimates

q
i =2q+D Y X, g+1l<t<n—gq. (1.5.5)
Jj==q
Since X, is not observed for ¢+ < O or ¢+ > n, we cannot use (1.5.5) for r < ¢ or
t > n — q. The program ITSM deals with this problem by defining X, := X; for
t<land X, =X, fort > n.

Theresult of applying the moving-averagefilter (1.5.5) withg = 2tothestrikedataof
Figure 1.6isshownin Figure 1.18. The estimated noiseterms ¥, = X, — %, areshown
in Figure 1.19. As expected, they show no apparent trend. To apply thisfilter using
ITSM, open the project STRIKES.TSM, select Smooth>Moving Average, Specify
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Figure 1-18

Simple 5-term moving
average m; of the strike
data from Figure 1.6.

Figure 1-19
Residuals V; = X, — i,
after subtracting the
5-term moving average
from the strike data
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2 for thefilter order, and enter the weights 1,1,1 for Theta(0), Theta(1), and Theta(2)
(these are automatically normalized so that the sum of the weightsisone). Then click
OK. O

Itisuseful tothink of {rz,} in(1.5.5) asaprocessobtainedfrom { X, } by application
of alinear operator or linear filter m, = Zj‘;m a;X,_; with weightsa; = (29 +
1)1 —g < j < q.Thisparticularfilterisalow-passfilter inthe sensethat it takesthe
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Figure 1-20
Smoothing with a
low-pass linear filter.

{ws} {fe = ajwe—5}

S Linear Filter

data {X,} and removes from it the rapidly fluctuating (or high frequency) component
{¥,} to leave the Slowly varying estimated trend term {7, } (See Figure 1.20).

The particular filter (1.5.5) isonly one of many that could be used for smoothing.
For large g, provided that (2g + 1)~ > - Y &~ 0, it not only will attenuate
noise but at the same time will alow linear trend functions m, = ¢ + c1t to pass
without distortion (see Problem 1.11). However, we must beware of choosing ¢ to
be too large, sinceif m, isnot linear, the filtered process, although smooth, will not
be a good estimate of m,. By clever choice of the weights {a,} it is possible (see
Problems 1.12—1.14 and Section 4.3) to design afilter that will not only be effective
in attenuating noisein the data, but that will also allow alarger classof trend functions
(for exampleall polynomials of degreelessthan or equal to 3) to passthrough without
distortion. The Spencer 15-point moving average is afilter that passes polynomials
of degree 3 without distortion. Its weights are

aj =0, |jl>7,
with

aj=a-j, |jl=7,
and

1
[a0.as. ... ar]) = >-[74,67.46.21, 3, -5, -6, 3. (1.5.6)

Applied to the process (1.5.2) with m, = co + c1t + cot? + cat®, it gives
7 7 7 7
YoaXe ;=Y am i+ Yy a¥ x Y am=m,
j==7 j=—7 j=—7 j=—7

wherethelast step dependson the assumed form of m, (Problem 1.12). Further details
regarding this and other smoothing filters can be found in Kendall and Stuart (1976),
Chapter 46.

(b) Exponential smoothing. For any fixed a € [0, 1], the one-sided moving
averagesm,,t = 1, ..., n, defined by the recursions

m=aX,+A—a)m,_q1, t=2 ...,n, (1.5.7)
and
mi = X1 (1.5.8)
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Figure 1-21
Exponentially smoothed
strike data with @ = 0.4.

can be computed using ITSM by selecting Smooth>Exponential and specifying
the value of «. Application of (1.5.7) and (1.5.8) is often referred to as exponential
smoothing, since the recursions imply that for r > 2, m, = Z’J;% a(l—a)/X,—; +
(1 - o)'~1X,, aweighted moving average of X,, X,_1, ..., with weights decreasing
exponentially (except for the last one).

(c) Smoothing by elimination of high-frequency components. The option
Smooth>FFT in the program ITSM allows us to smooth an arbitrary series by elimi-
nation of the high-frequency components of its Fourier series expansion (see Section
4.2). This option was used in Example 1.1.4, where we chose to retain the fraction
f = .035of thefrequency componentsof the seriesin order to estimatethe underlying
signal. (The choice f = 1 would have |eft the series unchanged.)

In Figures 1.21 and 1.22 we show the results of smoothing the strike data by ex-
ponential smoothing with parameter « = 0.4 (see (1.5.7)) and by high-frequency
elimination with f = 0.4, i.e,, by eiminating a fraction 0.6 of the Fourier compo-
nents at the top of the frequency range. These should be compared with the simple
5-term moving average smoothing shown in Figure 1.18. Experimentation with dif-
ferent smoothing parameters can easily be carried out using the program ITSM. The
exponentially smoothed value of the last observation is frequently used to forecast
the next data value. The program automatically selects an optimal value of « for this
purposeif « is specified as —1 in the exponential smoothing dialog box. O

(d) Polynomial fitting. In Section 1.3.2 we showed how a trend of the form
m; = ap+ ayt + ayt? can befitted to the data {x,, . . ., x,} by choosing the parameters
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frequencies with f = 0.4.

ao, a1, and a, to minimize the sum of squares, Y, (x, — m,)? (see Example 1.3.4).
The method of least squares estimation can also be used to estimate higher-order
polynomial trends in the same way. The Regression option of ITSM alows least
squares fitting of polynomial trends of order up to 10 (together with up to four har-
monic terms; see Example 1.3.6). It also allows generalized least squares estimation
(see Section 6.6), in which correlation between the residual s is taken into account.

Method 2: Trend Elimination by Differencing

Instead of attempting to remove the noise by smoothing as in Method 1, we now
attempt to eliminate the trend term by differencing. We define the lag-1 difference
operator V by

VX, =X,— X,.1=(1- B)X,, (1.5.9)
where B isthe backward shift operator,
BX, =X, 1. (1.5.10)

Powers of the operators B and V are defined in the obviousway, i.e., B/ (X,) = X,_;
and V/(X,) = V(V/71(X,)), j > 1, with V°(X,) = X,. Polynomialsin B and V are
manipulated in precisely the same way as polynomial functions of real variables. For
example,

VX, =V(V(X,) = (1-B)(1- B)X, = (1- 2B + B)X,

— Xt - 2Xt—l + Xt—2'
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Figure 1-23

The twice-differenced series
derived from the population
data of Figure 1.5.

If the operator V isappliedto alinear trend functionm, = co+ c17, thenwe obtain the
constant function Vim, = m, — m,_1 = co + c1t — (cg + c1(t — 1)) = ¢1. Inthe same
way any polynomial trend of degree k can be reduced to a constant by application of
the operator V* (Problem 1.10). For example, if X, = m, +Y,, wherem, = lezo cjt!
and Y, is stationary with mean zero, application of V* gives

VEX, = klep + VFY,,

a stationary process with mean k!c,. These considerations suggest the possihility,
given any sequence {x,} of data, of applying the operator V repeatedly until we find
a sequence {V¥x,} that can plausibly be modeled as a realization of a stationary
process. It is often found in practice that the order & of differencing required is quite
small, frequently one or two. (This relies on the fact that many functions can be
well approximated, on an interval of finite length, by apolynomial of reasonably low
degree))

Applyingtheoperator V tothepopulationvalues{x,,r = 1, ..., 20} of Figure 1.5, we
find that two differencing operationsare sufficient to produce a serieswith no apparent
trend. (To carry out the differencing using ITSM, select Transform>Difference,
enter the value 1 for the differencing lag, and click 0K.) This replaces the original
series {x,} by the once-differenced series {x, — x,_1}. Repetition of these steps gives
the twice-differenced series V2x, = x;, — 2x,_1 + x,_», plotted in Figure 1.23. Notice
that the magnitude of thefluctuationsin V2x, increaseswiththevalueof x,. Thiseffect
can be suppressed by first taking natural logarithms, y, = Inx,, and then applying the
operator V2 to the series {y,}. (Seedso Figures 1.1 and 1.17.) O
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1.5.2 Estimation and Elimination of Both Trend and Seasonality

The methods described for the estimation and elimination of trend can be adapted in
anatural way to eliminate both trend and seasonality in the general model, specified
asfollows.

Classical Decomposition M odel
X, =m,+s,+Y, t=1 ... n, (1.5.11)

where EY, =0, sug=s, and Y4 s, =0.

We shall illustrate these methods with reference to the accidental deaths data of
Example 1.1.3, for which the period d of the seasonal component is clearly 12.

Method S1: Estimation of Trend and Seasonal Components
The method we are about to describe is used in the Transform>Classical option
of ITSM.

Suppose we have observations {xi, ..., x,}. The trend is first estimated by ap-
plying amoving average filter specially chosen to eliminate the seasonal component
and to dampen the noise. If the period d is even, say d = 2¢, then we use

my = (0.5x,_; +x_g41+ -+ X49-1+05x,,)/d, g<t<n-—gq. (1512)

If the period isodd, say d = 2¢ + 1, then we use the simple moving average (1.5.5).

Thesecond step isto estimate the seasonal component. Foreachk =1, ..., d,we
computetheaverage w, of thedeviations{(xc; ja — i+ ja), g < k+jd < n—q}.Since
these average deviations do not necessarily sum to zero, we estimate the seasonal
component s; as

d
Se=we—d Y w, k=1....4d, (1.5.13)
i=1

and §k = §k—d’ k>d.
Thedeseasonalized dataisthen defined to bethe original serieswiththe estimated
seasonal component removed, i.e.,

d=x-5, t=1...,n. (1.5.19)

Finally, we reestimate the trend from the deseasonalized data {d,} using one of
the methods already described. The program ITSM alows you to fit aleast squares
polynomial trend 7 to the deseasonalized series. In terms of this reestimated trend
and the estimated seasonal component, the estimated noise series is then given by

Yy=x,—m;, =S, t=1...,n.
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Figure 1-24

The deseasonalized
accidental deaths
data from ITSM.

The reestimation of thetrend is donein order to have a parametric form for the trend
that can be extrapolated for the purposes of prediction and simulation.

Figure 1.24 shows the deseasonalized accidental deaths data obtained from ITSM
by reading in the series DEATHS.TSM, selecting Transform>Classical, check-
ing only the box marked Seasonal Fit, entering 12 for the period, and clicking
OK. The estimated seasonal component s,, shown in Figure 1.25, is obtained by se-
lecting Transform>Show Classical Fit. (Except for having a mean of zero, this
estimate is very similar to the harmonic regression function with frequencies 2 /12
and 27 /6 displayed in Figure 1.11.) The graph of the deseasonalized data suggests
the presence of an additional quadratic trend function. In order to fit such atrend to
the deseasonalized data, select Transform>Undo Classical toretrievetheorigina
dataand then select Transform>Classical and check the boxes marked Seasonal
Fit and Polynomial Trend, entering 12 for the period and selecting Quadratic
for the trend. Then click OK and you will obtain the trend function

i, = 9952 — 71.82¢ +0.8260r%, 1<t <72
At this point the data stored in ITSM consists of the estimated noise
Vi=x, —i, =5, t=1,...,72

obtained by subtracting the estimated seasonal and trend componentsfromtheoriginal
data. O
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Figure 1-25

The estimated seasonal
component of the
accidental deaths

data from ITSM.

Example 1.5.5
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Method S2: Elimination of Trend and Seasonal Components by Differencing
The technique of differencing that we applied earlier to nonseasonal data can be
adapted to deal with seasonality of period d by introducing the lag-d differencing
operator V, defined by

ViX, =X, — X,_g = (1— BHX,. (1.5.15)

(This operator should not be confused with the operator V¢ = (1 — B)? defined
earlier.)
Applying the operator V, to the model

X;=m;+s5,+Y,
where {s,} has period d, we obtain
VoXy=my —m_q+Y, — Y4,

which gives a decomposition of the difference V,X, into atrend component (m, —
m,_y) andanoiseterm (Y, — Y,_,). Thetrend, m, —m,_,, canthen be eliminated using
the methods already described, in particular by applying a power of the operator V.

Figure 1.26 shows the result of applying the operator Vi, to the accidental deaths
data. Thegraphisobtained from I TSM by opening DEATHS. TSM, selecting Trans-
form>Difference, enteringlag 12, and clicking OK. The seasonal component evident
in Figure 1.3 is absent from the graph of Viox;, 13 < r < 72. However, there still
appears to be a nondecreasing trend. If we now apply the operator V to {Vi,x;} by
again selecting Transform>Difference, thistimewithlag one, we obtain the graph
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Figure 1-26

The differenced series
{V12X{, t = 13, ey 72}
derived from the monthly
accidental deaths

X, t=1,...,72}.

Figure 1-27

The differenced series
(VVix, t =14,...,72)
derived from the monthly
accidental deaths

X, t=1,...,72)
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of VVx,, 14 <t < 72, shown in Figure 1.27, which has no apparent trend or sea-
sonal component. In Chapter 5 we shall show that this doubly differenced series can
in fact be well represented by a stationary time series model. O

In this section we have discussed a variety of methods for estimating and/or
removing trend and seasonality. The particular method chosen for any given data
set will depend on a number of factors including whether or not estimates of the
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components of the series are required and whether or not it appears that the data
contain a seasonal component that does not vary with time. The program ITSM
allows two options under the Transform menu:

1. “classical decomposition,” in which trend and/or seasonal components are esti-
mated and subtracted from the data to generate a noise sequence, and

2. “differencing,” in which trend and/or seasonal components are removed from the
data by repeated differencing at one or more lags in order to generate a noise
sequence.

A third option is to use the Regression menu, possibly after applying a Box—Cox
transformation. Using this option we can (see Example 1.3.6)

3. fit asum of harmonics and a polynomial trend to generate a noise sequence that
consists of the residuals from the regression.

In the next section we shall examine some techniquesfor deciding whether or not the
noi se sequence so generated differs significantly fromiid noise. If the noise sequence
does have sample autocorrel ations significantly different from zero, then we can take
advantage of this serial dependence to forecast future noise values in terms of past
values by modeling the noise as a stationary time series.

1.6 Testing the Estimated Noise Sequence

The objective of the data transformations described in Section 1.5 is to produce a
serieswith no apparent deviationsfrom stationarity, and in particular with no apparent
trend or seasonality. Assuming that this has been done, the next step isto model the
estimated noise sequence (i.e., the residuals obtained either by differencing the data
or by estimating and subtracting the trend and seasonal components). If thereis no
dependence among between these residual's, then we can regard them as observations
of independent random variables, and thereisno further modeling to be done except to
estimate their mean and variance. However, if thereis significant dependence among
the residual's, then we need to look for a more complex stationary time series model
for the noise that accounts for the dependence. This will be to our advantage, since
dependence meansin particul ar that past observations of the noise sequence can assist
in predicting future values.

In this section we examine some simple tests for checking the hypothesis that
the residuals from Section 1.5 are observed values of independent and identically
distributed random variables. If they are, then our work is done. If not, then we must
use the theory of stationary processesto be developed in later chaptersto find amore
appropriate model.
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(&) The sample autocorrelation function. For large n, the sample autocorre-
lations of an iid sequence Yy, . .., ¥, with finite variance are approximately iid with
distribution N(O, 1/n) (see TSTM p. 222). Hence, if yy, ..., y, isaredization of
such an iid sequence, about 95% of the sample autocorrelations should fall between
the bounds +1.96/./n. If we compute the sample autocorrelations up to lag 40 and
find that more than two or three values fall outside the bounds, or that one value falls
far outside the bounds, we therefore reject theiid hypothesis. The bounds +1.96//n
are automatically plotted when the sample autocorrelation function is computed by
the program ITSM.

(b) The portmanteau test. Instead of checking to see whether each sample
autocorrelation p(j) falls inside the bounds defined in (a) above, it is also possible
to consider the single statistic

h
Q=nY_ P\
j=1
If Y3, ..., Y, isafinite-varianceiid sequence, then by the sameresult usedin (a), Q is
approximately distributed as the sum of squares of the independent N(O, 1) random
variables, «/np(j), j = 1,...,h,i.e, as chi-squared with i degrees of freedom. A
largevalue of Q suggeststhat the sample autocorrelations of the dataaretoo large for
the data to be a sample from an iid sequence. We therefore reject the iid hypothesis
alevel « if Q > x2 (h), where x2 () isthe 1 — o quantile of the chi-squared
distribution with 4 degrees of freedom. The program ITSM conducts arefinement of
thistest, formulated by Ljung and Box (1978), in which Q isreplaced by

h
Qe =n(n+2) Y p*()/(n — j),
j=1
whose distribution is better approximated by the chi-squared distribution with &
degrees of freedom.

Another portmanteau test, formulated by McLeod and Li (1983), can be used as
afurther test for theiid hypothesis, sinceif the dataareiid, then the squared dataare
asoiid. It is based on the same statistic used for the Ljung—Box test, except that the
sample autocorrelations of the data are replaced by the sample autocorrelations of
the squared data, pww (h), giving

h
OuL =n(n+2) Y phy®)/(n —k).
k=1

The hypothesis of iid datais then rejected at level « if the observed value of Oy, is
larger than the 1 — « quantile of the x (k) distribution.

(c) The turning point test. If y1, ..., v, iSaseguence of observations, we say
that there isaturning point at timei,1 < i < n,if yi_1 < y; and y; > y;;1 orif
vi—1 > yi and y; < yi1. If T isthe number of turning points of an iid sequence of
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length n, then, since the probability of a turning point at time i is % the expected
vaueof T is

pwr = E(T)=2(n—2)/3.
It can also be shown for an iid sequence that the variance of T is
o? = Var(T) = (16n — 29)/90.

A large value of T — ur indicates that the series is fluctuating more rapidly than
expected for an iid sequence. On the other hand, avalue of T — wy much smaller
than zero indicates a positive correlation between neighboring observations. For an
iid sequence with n large, it can be shown that

T isapproximately N(ur, 7).

This means we can carry out a test of the iid hypothesis, rejecting it at level « if
|T — prl/or > ®P1_q/2, Where ®,_,» isthe 1 — «/2 quantile of the standard normal
distribution. (A commonly used value of « is .05, for which the corresponding value
of qDl—a/Z is 196)

(d) The difference-sign test. For thistest we count the number S of valuesof i
suchthat y; > y;_1,i = 2,..., n, or equivalently the number of timesthe differenced
seriesy; — y;_1 ispositive. For aniid sequenceit is clear that

us = ES = %(n —-1.

It can also be shown, under the same assumption, that
ol =Va(S) = (n+1)/12,

and that for large n,
S is approximately N(us, o).

A large positive (or negative) value of S — g indicates the presence of an increasing
(or decreasing) trend in the data. We therefore reject the assumption of no trend in
the dataif |S - [,LS|/O'S > ¢1—a/2-

Thedifference-sign test must be used with caution. A set of observations exhibit-
ing astrong cyclic component will passthe difference-sign test for randomness, since
roughly half of the observations will be points of increase.

(e) The rank test. Therank test isparticularly useful for detecting alinear trend
in the data. Define P to be the number of pairs (i, j) such that y; > y; and j > i,
i=1,...,n— 1 Thereisatotal of (}) = %n(n — 1) pairs (i, j) suchthat j > i. For
an iid sequence {Y1, ..., ¥, }, each event {Y; > Y;} has probability % and the mean
of P istherefore

1
Up = Zn(n - 1.
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It can aso be shown for an iid sequence that the variance of P is
ag =nn—21)2n+5)/72

and that for large n,
P isapproximately N(up, 07)

(see Kendall and Stuart, 1976). A large positive (negative) value of P — wp indicates
the presence of an increasing (decreasing) trend in the data. The assumption that
{y;} is a sample from an iid sequence is therefore rejected at level « = 0.05 if
|P — ppl/op > P12 = 1.96.

(f) Fitting an autoregressive model. A further test that can becarried out using
the program I TSM isto fit an autoregressive mode to the data using the Yule-Walker
algorithm (discussed in Section 5.1.1) and choosing the order which minimizes the
AICC dtatistic (see Section 5.5). A selected order equal to zero suggests that the data
iswhite noise.

(g) Checking for normality. If the noise processis Gaussian, i.e,, if all of its
joint distributions are normal, then stronger conclusions can be drawn when a model
is fitted to the data. The following test enables us to check whether it is reasonable
to assume that observations from an iid sequence are also Gaussian.

LetYy) < Y < -+ < Y, betheorder statistics of arandom sample Yy, ..., Y,
from the distribution N(u, 02). If X1y < X2y < --+ < X, are the order statistics
from aN(0, 1) sample of size n, then

EYj = p+om;,

wherem; = EX(;), j = 1,...,n. Thegraph of the points (m1, Y1), ..., (m,, Yu)
iscalledaGaussian qq plot) and can bedisplayedinITSM by clicking ontheyellow
button labeled QQ. If the normal assumptioniscorrect, the Gaussian qq plot should be
approximately linear. Consequently, the squared correlation of the points (m;, Y;),
i =1,...,n,shouldbenear 1. Theassumption of normality isthereforerejectedif the
squared correlation R? issufficiently small. If we approximate m; by ®~1((i —.5)/n)
(see Mage, 1982 for some alternative approximations), then R? reduces to

(L, -1t (%))2
n X7 n i—. 2’
Y (Yo = V)2Y, (071 (52))
whereY = n~1(Y1+- - - +Y,). Percentage points for the distribution of R?, assuming
normality of the sample values, are given by Shapiro and Francia (1972) for sample

sizesn < 100. For n = 200, P(R? < .987) = .05 and P(R? < .989) = .10. For
larger values of n the Jarque-Beratest for normality can be used (see Section 5.3.3).

R? =

If we did not know in advance how the signal plus noise data of Example 1.1.4 were
generated, we might suspect that they came from an iid sequence. We can check this
hypothesis with the aid of the tests (a)—(f) introduced above.
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Figure 1-28

The sample autocorrelation
function for the data of
Example 1.1.4 showing

the bounds +1.96//n.

ACF

(a) The sample autocorrelation function (Figure 1.28) is obtained from ITSM by
opening the project SIGNAL.TSM and clicking on the second yellow button at the
top of the ITSM window. Observing that 25% of the autocorrelations are outside the
bounds +1.96/+/200, we reject the hypothesis that the seriesisiid.

The remaining tests (b), (c), (d), (e), and (f) are performed by choosing the option
Statistics>Residual Analysis>Tests of Randomness. (Since no model has
been fitted to the data, the residuals are the same as the data themselves.)

(b) The samplevalue of the Ljung-Box statistic 0, g with s = 20is51.84. Since
the corresponding p-value (displayed by ITSM) is.00012 < .05, we reject the iid
hypothesis at level .05. The p-value for the McLeod-Li statistic Oy is0.717. The
McLeod-Li statistic does therefore not provide sufficient evidence to reject the iid
hypothesis at level .05.

(c) The sample value of the turning-point statistic 7' is 138, and the asymptotic
distribution under theiid hypothesis(with samplesizen = 200) isN(132, 35.3). Thus
|T — ur|/or = 1.01, corresponding to a computed p-value of .312. On the basis of
the value of T thereistherefore not sufficient evidence to reject the iid hypothesis at
level .05.

(d) The sample value of the difference-sign statistic S is 101, and the asymptotic
distribution under the iid hypothesis (with sample size n = 200) is N(99.5, 16.7).
Thus|S —us|/os = 0.38, corresponding to acomputed p-value of 0.714. Onthebasis
of the value of S there istherefore not sufficient evidence to reject the iid hypothesis
at level .05.
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Problems

(e) The sample value of the rank statistic P is 10310, and the asymptotic dis-
tribution under the iid hypothesis (with n = 200) is N(9950, 2.239 x 10°). Thus
|P — up|/op = 0.76, corresponding to acomputed p-value of 0.447. On the basis of
the value of P thereistherefore not sufficient evidenceto reject theiid hypothesis at
level .05.

(f) The minimum-AICC Yule-Walker autoregressive model for the data is of
order seven, supporting the evidence provided by the sasmple ACF and Ljung-Box
tests against theiid hypothesis.

Thus, athough not all of the tests detect significant deviation fromiid behavior,
the sample autocorrelation, the Ljung—Box statistic, and thefitted autoregression pro-
videstrong evidenceagainst it, causing ustoreject it (correctly) inthisexample. O

The general strategy in applying the tests described in this section is to check
them all and to proceed with caution if any of them suggests a serious deviation
from the iid hypothesis. (Remember that as you increase the number of tests, the
probability that at |east one rejects the null hypothesiswhen it istrue increases. You
should therefore not necessarily reject the null hypothesis on the basis of one test
result only.)

1.1. Let X and Y be two random variableswith E(Y) = u and EY? < 0.
a. Show that the constant ¢ that minimizes E(Y — ¢)?isc = p.
b. Deduce that the random variable f(X) that minimizes E[(Y — f(X))?X] is

f(X) = E[Y|X].
c. Deducethat the random variable £ (X) that minimizes E(Y — f(X))?isalso
f(X) = E[Y|X].

1.2. (Generalization of Problem 1.1.) Supposethat X, X», ... isasequence of ran-
dom variableswith E(X?) < oo and E(X,) = u.

a Show that the random variable f (X3, ..., X,) that minimizes E[(X, 41 —
FX1, o X)X, .. X, ] s

f(Xe, ..., X)) = E[Xu1l X1, ..., X,].

b. Deduce that the random variable f (X1, ..., X,) that minimizes E[ (X1 —
f(X1,....X,))? isaso

fXa, ..., X)) = E[ Xyl Xy, ..., Xa.

c. If X1, X, ... isiidwith E(X?) < oo and EX; = u, where u isknown, what
istheminimum mean squared error predictor of X, ; intermsof X, ..., X,,?
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13
14.

15

1.6.

1.7.

d. Under the conditions of part () show that the best linear unbiased estimator
of pintermsof X1,..., X, isX = 3(X;+--- + X,). (& said to be an
unbiased estimator of w if E4 = w for dl w.)

e. Under the conditions of part (c) show that X is the best linear predictor of
X 41 that isunbiased for w.

f. If X1, Xo, ... isiid with E(X?) < oo and EX; = u, andif So =0, S, =
X1+ -+ X,,n = 1,2, ..., what is the minimum mean squared error
predictor of S, ; intermsof S,..., S,?

Show that a strictly stationary process with E(X?) < oo isweakly stationary.

Let {Z,} be a sequence of independent normal random variables, each with
mean 0 and variance o2, and let a, b, and ¢ be constants. Which, if any, of
the following processes are stationary? For each stationary process specify the
mean and autocovariance function.

aX,=a+bZ +cZ,_»

b. X, = Z,cos(ct) + Z>Sin(ct)
Cc. X, = Z,cos(ct) + Z,_19n(ct)
d X, =a+bZ

e. X, = Zycos(ct)

f. X, =2,Z,4

Let {X,} be the moving-average process of order 2 given by
X, =Z,+0Z >,

where {Z,} isSWN(O, 1).

a. Find the autocovariance and autocorrelation functions for this process when
0 =.8

b. Compute the variance of the sample mean (X; + X, + X3 + X4)/4 when
0 =.8

. Repeat (b) when 6 = —.8 and compare your answer with the result obtained
in (b).

Let {X,} bethe AR(1) process defined in Example 1.4.5.

a. Compute the variance of the sample mean (X; + X, + X3 + X4)/4 when
¢ =.9ando? =1

b. Repeat (a) when ¢ = —.9 and compare your answer with the result obtained
in(a).

If {X,} and {Y;} are uncorrelated stationary sequences, i.e., if X, and Y, are
uncorrelated for every » and s, show that {X, + Y,} is stationary with autoco-
variance function equa to the sum of the autocovariance functions of {X,} and

{Y:}.
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1.8. Let{Z;} bellD N(0, 1) noise and define
Z;, if # iseven,
(Z?,—1)/v2, iftisodd.

a. Show that {X,} isWN(O, 1) but not iid(0, 1) noise.
b. Find E(X,41]X1, ..., X,) for n odd and n even and compare the results.

X, =

19. Let {x4,...,x,} be observed values of atime seriesat times 1, ..., n, and let
o(h) bethe sample ACF at lag i asin Definition 1.4.4.

a If x, = a + br, where a and b are constants and b # 0, show that for each
fixed h > 1,
o(h) — lasn — oo.

b. If x, = ccos(wt), where ¢ and w are constants (¢ # 0 and w € (-, n]),
show that for each fixed £,

o(h) — cos(wh) asn — oo.

1.10.1f m, = Y7 _qat®, t = 0, £1, ..., show that Vm, is a polynomia of degree
p — 1int and hence that V7*im, = 0.

1.11. Consider thesimplemoving-averagefilter withweightsa, = (29 +1)7%, —g <
J=q.
a Ifm, =co+cit, showthat }5_
b.I1fZ,,t =0,%1, £2, ..., areindependent random variableswith mean 0 and
variance o2, show that the moving average A, = > a4 Z ist smal”
for large g inthe sensethat EA, = 0 and Var(A,) = 02/(2q + 1).

ajm,_; = nmy.

1.12. a Show that a linear filter {a;} passes an arbitrary polynomial of degree k
without distortion, i.e., that

m; = Zajm,,j
j
for all kth-degree polynomialsm, = co + c1t + - - - + ¢ %, if and only if
Zaj = 1 and
j
Zj’aj =0, forr=1,... k.
j

b. Deduce that the Spencer 15-point moving-average filter {a;} defined by
(1.5.6) passes arbitrary third-degree polynomial trends without distortion.
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1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

Find a filter of the form 1 + B + B2 + y B3 (i.e, find «, B8, and y) that
passes linear trends without distortion and that eliminates arbitrary seasonal
components of period 2.

Show that the filter with coefficients [a_,, a_1, ag, a1, as] = é[—l, 4,3, 4, -1]
passes third-degree polynomials and eliminates seasonal components with pe-
riod 3.

Let {Y;} be astationary process with mean zero and let « and b be constants.

alf X, =a+bt +s +Y, wheres, is a seasonal component with period
12, show that VV,X, = (1 — B)(1 — B¥)X, is stationary and express its
autocovariance function in terms of that of {Y,}.

b. If X, = (a + bt)s, + Y;, where s, is a seasonal component with period 12,
show that VZ,X, = (1— B'%)2X, isstationary and expressits autocovariance
function in terms of that of {Y,}.

(Using ITSM to smooth the strikesdata.) Double-click onthe I TSM icon, select
File>Project>Open>Univariate, click OK, and open the file STRIKES.
TSM. The graph of the data will then appear on your screen. To smocth the
dataselect Smooth>Moving Ave, Smooth>Exponential, Of Smooth>FFT. Try
using each of these to reproduce the results shown in Figures 1.18, 1.21, and
1.22.

(Using ITSM to plot the deaths data.) In ITSM select File>Project>0pen>
Univariate, click OK, and open the project DEATHS.TSM. The graph of
the data will then appear on your screen. To see a histogram of the data, click
on the sixth yellow button at the top of the ITSM window. To see the sample
autocorrelation function, click on the second yellow button. The presence of a
strong seasonal component with period 12 is evident in the graph of the data
and in the sample autocorrelation function.

(Using ITSM to analyze the deaths data.) Open the file DEATHS. TSM, select
Transform>Classical, check the box marked Seasonal Fit, and enter 12
for the period. Make surethat the box labeled Polynomial Fit isnotchecked,
and click, 0OK. You will then see the graph (Figure 1.24) of the deseasonalized
data. Thisgraph suggeststhe presence of an additional quadratic trend function.
To fit such atrend to the deseasonadlized data, select Transform>Undo Clas-
sical to retrieve the original data. Then select Transform>Classical and
check the boxes marked Seasonal Fit and Polynomial Trend, entering 12
for the period and Quadratic for the trend. Click 0K and you will obtain the
trend function

m, = 9952 — 71.82r + 0.8260:%, 1 <1 < 72.
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At this point the data stored in ITSM consists of the estimated noise
Vo=x —m, —5, t=1,...,72

obtained by subtracting the estimated seasonal and trend components from the
origina data. The sample autocorrelation function can be plotted by clicking
on the second yellow button at the top of the ITSM window. Further tests for
dependence can be carried out by selecting theoptionsStatistics>Residual
Analysis>Tests of Randomness. Itisclear from thesethat thereissubstan-
tial dependence in the series {Y;}.

Toforecast thedatawithout allowing for thisdependence, select theoption Fore-
casting>ARMA. Specify 24 for the number of valuesto be forecast, and the program
will compute forecasts based on the assumption that the estimated seasonal and trend
components are true values and that {Y,} is a white noise sequence with zero mean.
(This is the default model assumed by ITSM until a more complicated stationary
model is estimated or specified.) The original data are plotted with the forecasts
appended.

Later we shall see how to improve on these forecasts by taking into account the
dependencein the series {Y,}.

1.19. Use a text editor, e.g.,, WORDPAD or NOTEPAD, to construct and save a
text file named TEST.TSM, which consists of a single column of 30 numbers,
{x1, ..., x30}, defined by

X1, ..., X10 . 486, 474, 434, 441, 435, 401, 414, 414, 386, 405;
X1, ..., Xg0 - 411, 389, 414, 426, 410, 441, 459, 449, 486, 510;
X1, ..., Xx30 - 506, 549, 579, 581, 630, 666, 674, 729, 771, 785.

This seriesis in fact the sum of a quadratic trend and a period-three seasonal
component. Use the program ITSM to apply the filter in Problem 1.14 to this
time series and discuss the resullts.
(Once the data have been typed, they can be imported directly into ITSM by
coping and pastingto theclipboard, andthenin I TSM selectingFile>Project>New>
Univariate, clicking on OK and selecting File>Import Clipboard.)
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2.1 Basic Properties

2.2 Linear Processes

2.3 Introduction to ARMA Processes

2.4 Properties of the Sample Mean and Autocorrelation Function
2.5 Forecasting Stationary Time Series

2.6 The Wold Decomposition

A key rolein time series analysis is played by processes whose properties, or some
of them, do not vary with time. If we wish to make predictions, then clearly we
must assume that something does not vary with time. In extrapolating deterministic
functions it is common practice to assume that either the function itself or one of its
derivatives is constant. The assumption of a constant first derivative leads to linear
extrapolation as a means of prediction. In time series analysis our goal isto predict
a series that typically is not deterministic but contains a random component. If this
random component is stationary, in the sense of Definition 1.4.2, then we can develop
powerful techniquesto forecast its future values. These techniqueswill be devel oped
and discussed in this and subsequent chapters.

2.1 Basic Properties

In Section 1.4 we introduced the concept of stationarity and defined the autocovari-
ance function (ACVF) of astationary time series {X,} as

y(h) = CoV(X, 1, X;), h=0,+1+£2 ...
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The autocorrelation function (ACF) of { X, } wasdefined similarly asthefunction o (-)
whosevaueatlagh is

_

y(©)
The ACVF and ACF provide a useful measure of the degree of dependence among
the values of atime series at different times and for this reason play an important
role when we consider the prediction of future values of the series in terms of the
past and present values. They can be estimated from observations of X, ..., X,, by
computing the sample ACVF and ACF as described in Section 1.4.1.

The role of the autocorrelation function in prediction is illustrated by the fol-
lowing simple example. Suppose that {X,} is a stationary Gaussian time series (see
Definition A.3.2) and that we have observed X,,. We would like to find the function
of X, that gives usthe best predictor of X,,,, the value of the series after another 7
time units have elapsed. To define the problem we must first say what we mean by
“best.” A natural and computationally convenient definition isto specify our required
predictor to be the function of X,, with minimum mean squared error. In thisillus-
tration, and indeed throughout the remainder of this book, we shall use this as our
criterion for “best.” Now by Proposition A.3.1 the conditional distribution of X,
giventhat X, = x, is

N(u + p(h)(x, — ), (1 — p(h)?)),

where 1 and o2 are the mean and variance of {X,}. It was shown in Problem 1.1 that
the value of the constant ¢ that minimizes E (X, — ¢)?isc = E(X,.,;) and that the
function m of X, that minimizes E(X,, — m(X,))? isthe conditional mean

p(h)

m(X,) = E(XpnlXn) = 0+ p(h) (X — ). (211)
The corresponding mean squared error is
E(Xyin — m(X,))? = 0?(1— p(h)?). (2.1.2)

This calculation shows that at least for stationary Gaussian time series, prediction of
X, interms of X, is more accurate as | p (h)| becomes closer to 1, and in the limit
as p — =+1thebest predictor approaches . + (X,, — 1) and the corresponding mean
squared error approaches 0.

In the preceding calculation the assumption of joint normality of X,., and X,
played a crucial role. For time series with nonnormal joint distributions the corre-
sponding calculations are in general much more complicated. However, if instead of
looking for the best function of X, for predicting X, ,, we look for the best linear
predictor, i.e., the best predictor of the form £(X,) = aX, + b, then our problem
becomes that of finding a and » to minimize E(X,,, — aX, — b)?>. An elementary
calculation (Problem 2.1), shows that the best predictor of thisformis

0X,) = o+ p(h) (X, — 1) (2.1.3)
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Proof

Definition 2.1.1

with corresponding mean squared error
EXuin — UX))? = 01— p(h)?). (2.1.4)

Comparison with (2.1.1) and (2.1.3) shows that for Gaussian processes, ¢(X,) and
m(X,) are the same. In genera, of course, m(X,) will give smaller mean squared
error than £(X,,), sinceit is the best of alarger class of predictors (see Problem 1.8).
However, the fact that the best linear predictor depends only on the mean and ACF of
the series{X,} meansthat it can be cal culated without more detailed knowledge of the
joint distributions. Thisis extremely important in practice because of the difficulty
of estimating all of the joint distributions and because of the difficulty of computing
the required conditional expectations even if the distributions were known.

Aswe shall seelater inthis chapter, similar conclusions apply when we consider
the more general problem of predicting X, asafunction not only of X,,, but also of
X,_1, X._2, . ... Before pursuing this question we need to examine in more detail the
properties of the autocovariance and autocorrélation functions of a stationary time
series.

Basic Properties of ~(-):

y(0) =0,

ly (h)| < y(0) for al h,
and y () iseven, i.e,

y(h) = y(—h) for al h.

Thefirst property issimply thestatement that Var(X,) > 0, thesecondisanimmediate
consequence of the fact that correlations are less than or equal to 1 in absolute value
(or the Cauchy—Schwarz inequality), and the third is established by observing that

y(h) = COV(XH-ha X,) = Cov(X,, Xitn) =y (=h). n

Autocovariance functions have another fundamental property, namely that of
nonnegative definiteness.

A redl-valued function « defined on the integers is nonnegative definite if

2": aik(i— jla; >0 (2.1.5)

i,j=1

for all positive integers n and vectorsa = (ay, .. ., a,)’ with real-valued compo-
nents a;.
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Theorem 2.1.1

Proof

Example 2.1.1

A real-valued function defined on the integers is the autocovariance function of a
stationary time seriesif and only if it is even and nonnegative definite.

To show that the autocovariance function y (-) of any stationary time series {X,} is
nonnegative definite, let a be any n x 1 vector with real componentsay, ..., a, and
let X, = (X,, ..., X1). Then by equation (A.2.5) and the nonnegativity of variances,

Var@X,) =ar,a= Y ay(i— jla; =0,
ij=1
where T, is the covariance matrix of the random vector X,. The last inequality,
however, is precisely the statement that y (-) is nonnegative definite. The converse
result, that there exists a stationary time series with autocovariance function « if « is
even, real-valued, and nonnegative definite, is more difficult to establish (see TSTM,
Theorem 1.5.1 for aproof). A dightly stronger statement can be made, namely, that
under the specified conditionsthere exists astationary Gaussian time series{ X, } with
mean 0 and autocovariance function « (+). [ |

Remark 1. Anautocorrelation function p(-) hasall the properties of an autocovari-
ance function and satisfies the additional condition p(0) = 1. In particular, we can
say that p(-) isthe autocorrelation function of a stationary processif and only if p(-)
isan ACVF with p(0) = 1. O

Remark 2. To verify that agiven function is nonnegative definiteit is often simpler
to find a stationary process that has the given function asits ACVF than to verify the
conditions (2.1.5) directly. For example, the function « (k) =cos(wh) is nonnegative
definite, since (see Problem 2.2) it isthe ACVF of the stationary process

X, = Acos(wt) + B sin(wt),
where A and B are uncorrelated random variables, both with mean 0 and variance 1.
Another illustration is provided by the following example. O
We shall show now that the function defined on the integers by
1, ifh=0,
kh)y =1 p, ifh==%1,
0, otherwise,

isthe ACVF of astationary time seriesif and only if |p| < % Inspection of the ACVF
of the MA(L) process of Example 1.4.4 shows that « isthe ACVF of such aprocess

if we can find real # and nonnegative o2 such that

o?(1+6% =1
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Definition 2.1.2

Proof

and
o0 = p.

If |p] < %, these equations give solutions 6 = (2p)~*(1 + \/1—4p?) and 02 =
(1+ 92)_1. However, if |p| > %, thereisno real solution for # and hence no MA(1)
process with ACVF «. To show that there is no stationary process with ACVF «,
we need to show that « is not nonnegative definite. We shall do this directly from
the definition (2.1.5). First, if p > %, K = [k (i — j)]?,_;, and ais the n-component
vectora= (1, -1,1, —1,...), then

aKa=n-2n—-1p <0forn > 2p/(2p — 1),

showing that « () is not nonnegative definite and therefore, by Theorem 2.1.1, is hot
an autocovariance function. If p < —%, thesameargument witha=(1,1,1,1,...)
again shows that « (-) is not nonnegative definite.

If {X,}isa(weakly) stationary time series, then the vector (X4, ..., X,) andthe
time-shifted vector (X1,,, ..., X,4+») have the same mean vectors and covariance
matrices for every integer 4 and positive integer n. A strictly stationary sequence is
one in which the joint distributions of these two vectors (and not just the means and
covariances) are the same. The precise definition is given below. O

{X,}isastrictly stationary time seriesif
(Xl’ LRI Xn)/ é (Xl+hv ceey Xn+h)/

for all al integersh andn > 1. (Here £ is used to indicate that the two random
vectors have the same joint distribution function.)

For reference, we record some of the elementary properties of strictly stationary
time series.

Propertiesof a Strictly Stationary Time Series {X,}:

Q

. Therandom variables X, are identically distributed.
b. (X, Xi11) < (X1, X145) for dl integerst and 4.

c. {X,} isweakly stationary if E(X?) < oo for al .
d. Weak stationarity does not imply strict stationarity.
e. Aniid sequenceisdtrictly stationary.

Properties (a) and (b) follow at once from Definition 2.1.2. If EX? < oo, then by (a)
and (b) EX, isindependent of + and Cov(X,, X,,,) = Cov(X1, X14,), Whichisaso
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Proposition 2.1.1

independent of ¢, proving (c). For (d) see Problem 1.8. If {X,} isan iid sequence of
random variables with common distribution function F, then the joint distribution
function of (X1.4, ..., X,1) evauated &t (x1,...,x,) IS F(x1)--- F(x,), whichis
independent of 4. ]

One of the simplest waysto construct atime series {X,} that is strictly stationary
(and hence stationary if EX? < oo) isto “filter” aniid sequence of random variables.
Let {Z,} be aniid sequence, which by (e) is strictly stationary, and define

X, =8(Zi,Zi 1, Zi_y) (2.1.6)
for some real-valued function g(-,...,-). Then {X,} is strictly stationary, since
(Zishs s Zign—gq)' < (Z,...,Z,_,) for al integers h. It follows also from the

defining eguation (2.1.6) that {X,} is g-dependent, i.e, that X, and X, are inde-
pendent whenever |t — s| > ¢. (Aniid sequence is O-dependent.) In the same way,
adopting asecond-order viewpoint, wesay that astationary timeseriesisg-cor related
if v(h) = 0 whenever |h| > g. A white noise sequence is then O-correlated, while
the MA(1) process of Example 1.4.4 is 1-correlated. The moving-average process of
order ¢ defined below is g-correlated, and perhaps surprisingly, the converseis also
true (Proposition 2.1.1).

The MA(g) Process:

{X,} isamoving-aver age process of order q if

X, =2, 4+60Zi 1+ +6,Z_, (2.1.7)

where {Z,} ~ WN(0, 62) and 61, . . ., 6, are constants.

Itisasimple matter to check that (2.1.7) defines a stationary time seriesthat isstrictly
stationary if {Z,} isiid noise. Inthelatter case, (2.1.7) isaspecia case of (2.1.6) with
g alinear function.

Theimportance of MA(g) processes derives from thefact that every g-correlated
processisan MA(g) process. Thisisthe content of the following proposition, whose
proof can be found in TSTM, Section 3.2. The extension of this result to the case
g = oo isessentially Wold's decomposition (see Section 2.6).

If {X,} isastationary g-correlated time serieswith mean 0, then it can be represented
asthe MA(q) processin (2.1.7).
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2.2 Linear Processes

Definition 2.2.1

The class of linear time series models, which includes the class of autoregressive
moving-average (ARMA) models, provides a general framework for studying ste-
tionary processes. In fact, every second-order stationary process is either a linear
process or can be transformed to alinear process by subtracting a deterministic com-
ponent. Thisresult isknown as Wold'sdecomposition and isdiscussed in Section 2.6.

Thetime series {X,} isalinear processif it has the representation
Xi= D> ViZiy, (22.1)
Jj=—00

for al ¢, where {Z,} ~ WN(0,¢?) and {y,} is a sequence of constants with
Z;’;_oo Y| < oo.

In terms of the backward shift operator B, (2.2.1) can be written more compactly as
X: =v(B)Z, (222)

wherey (B) = Zj‘;_w ¥; B/. Alinear processiscalledamovingaver ageor M A(oo)
if y; =0fordl j <0,i.e,if

[e.¢]
X, =) ViZ;.
j=0

Remark 1. Thecondition) 72 _ || < oo ensuresthat theinfinitesumin (2.2.1)
converges (with probability one), since E|Z;| < ¢ and

ElX,| < Y (WIEIZ-]) < ( > |w,»|) o < o0,
j==00 j=—00
It also ensuresthat Zji_oo Ilf,? < oo and hence (see Appendix C, Example C.1.1) that
the seriesin (2.2.1) converges in mean sguare, i.e., that X, is the mean square limit
of thepartial sums > *__, ¥;Z,;. Thecondition 3 ~7__ || < oo aso ensurescon-
vergence in both senses of the more general series (2.2.3) considered in Proposition
2.2.1 below. In Section 10.5 we consider amore general class of linear processes, the
fractionally integrated ARMA processes, for which the coefficents are not absolutely
summable but only square summable. O

The operator ¢ (B) can be thought of as a linear filter, which when applied to
the white noise “input” series {Z,} produces the “output” {X,} (see Section 4.3). As
established in thefollowing proposition, alinear filter, when applied to any stationary
input series, produces a stationary output series.
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Proposition 2.2.1

Proof

Let {Y;} be a stationary time series with mean 0 and covariance function yy. If
Y ¥l < oo, then thetime series

X, = Z VY, ;=Y (B)Y, (2.2.3)

j=—o00

is stationary with mean 0 and autocovariance function

yx(W)y =Y Y Wity (h+k— ). (2.2.4)

j=—00 k=—00

In the special case where {X,} isalinear process,

yx(h) = > ¥i¥0’. (2.2.5)

j=—00

The argument used in Remark 1, with o replaced by /yy (0), showsthat the seriesin
(2.2.3) is convergent. Since EY, = 0, we have

E(X)=E < > w,-Y,,-) = Y YE¥_)=0

j=—00 j=—00

and

E(X,4X) =E [( > w,,-Y,+h__,-) ( > W,_kﬂ

j=—00 k=—00

= i i Vi E(Y ;Y1)

j=—00 k=—00

=D 2 Vit Ghi—j+h),
j=—00 k=—00
which showsthat { X, } isstationary with covariancefunction (2.2.4). (Theinterchange
of summation and expectation operations in the above calculations can be justified
by the absolute summability of v;.) Finaly, if {Y;} is the white noise sequence {Z,}
in(2.2.1),thenyy(h — j + k) = o?if k = j — h and O otherwise, from which (2.2.5)
follows. [ ]

Remark 2. Theabsolute convergenceof (2.2.3) implies (Problem 2.6) that filters of
theforma(B) =372 «a;B/andB(B) = 3 72 B;B’ with absolutely summable

coefficients can be applied successively to a stationary series {Y,} to generate a new
stationary series

o0
W, = Z Wth—jy

j=—0
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where

v = Z ik = Z Bretj—i- (2.2.6)

k=—00 k=—00

These relations can be expressed in the equivalent form

W, = w(B)Yr,
where

V¥ (B) = a(B)B(B) = B(B)a(B), (2.2.7)
and the products are defined by (2.2.6) or equivaently by multiplying the series
> o;Bland 3" BB/ term by term and collecting powers of B. Itis clear
from (2.2.6) and (2.2.7) that the order of application of the filters «(B) and 8(B) is
immaterial. O

Example 2.2.1  An AR(1) process

In Example 1.4.5, an AR(1) process was defined as a stationary solution {X,} of the
eguations

X, — ¢X,_1 = Z,, (2.2.8)

where {Z,} ~ WN(0, 6?), |¢| < 1, and Z, isuncorrelated with X, for each s < . To
show that such a solution exists and is the unique stationary solution of (2.2.8), we
consider the linear process defined by

X, = ZWZH. (2.2.9)
j=0

(The coefficients ¢/ for j > 0 are absolutely summable, since |¢| < 1.) It is easy
to verify directly that the process (2.2.9) is a solution of (2.2.8), and by Proposition

2.2.1itisaso stationary with mean 0 and ACVF
e o 02 h
yx(h) = Z¢1¢1+h02 _ 1__@;2’
j=0

forh > 0.
To show that (2.2.9) is the only stationary solution of (2.2.8) let {Y,} be any
stationary solution. Then, iterating (2.2.8), we obtain

Yz = ¢Yz—l + Zt
= Zt + ‘inzfl + ¢2Yr72

=Zi+PZi a4+ O Zi i + Y, 1
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If {Y,} is stationary, then EY? isfinite and independent of 7, so that

k
EY, =Y ¢, )" = ¢*PE(Y, 1)
j=0

— 0ask — oo.

Thisimpliesthat Y, isequal to the mean squarelimit 3 %%, ¢’ Z,; and hence that the
process defined by (2.2.9) is the unique stationary solution of the equations (2.2.8).

It the case |¢| > 1, the seriesin (2.2.9) does not converge. However, we can
rewrite (2.2.8) in the form

X, =—¢"Za+ ¢ X (2.2.10)
Iterating (2.2.10) gives

Xi=—0¢"Zii1— ¢ Ziio+ ¢ X102

= _¢_1Zt+1 - ¢_k_lzz+k+l + ¢_k_lxt+k+1,

which shows, by the same arguments used above, that
X, = — Z ¢ 7 (2.2.11)
j=1

isthe unique stationary solution of (2.2.8). This solution should not be confused with
the nonstationary solution {X,} of (2.2.8) obtained when X, isany specified random
variable that is uncorrelated with {Z,}.

The solution (2.2.11) isfrequently regarded as unnatural, since X, as defined by
(2.2.11) is correlated with future values of Z,, contrasting with the solution (2.2.9),
which has the property that X, is uncorrelated with Z; for al s > ¢. It is customary
therefore in modeling stationary time series to restrict attention to AR(1) processes
with |¢| < 1. Then X, has the representation (2.2.8) in terms of {Z,, s < ¢}, and we
say that {X,} isacausal or future-independent function of {Z,}, or more concisely
that {X,} is a causal autoregressive process. It should be noted that every AR(1)
processwith |¢| > 1 can be reexpressed asan AR(1) processwith |¢| < 1 and anew
white noise sequence (Problem 3.8). From a second-order point of view, therefore,
nothing islost by eliminating AR(1) processes with |¢| > 1 from consideration.

If ¢ = 1, thereis no stationary solution of (2.2.8) (see Problem 2.8). O

Remark 3. Itisworth remarking that when |¢| < 1 the unique stationary solution
(2.2.9) can befound immediately withtheaid of (2.2.7). Todothislet ¢(B) = 1—¢B
and 7 (B) = Zj‘;o ¢’ B/. Then

V(B) :=¢(B)n(B) = 1.
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Applying the operator 7 (B) to both sides of (2.2.8), we obtain
X, =n(B)Zi=) ¢'Z.,
j=0

as claimed. 0

2.3 Introduction to ARMA Processes

In this section we introduce, through an example, some of the key properties of an
important classof linear processesknown asARMA (autoregressive moving average)
processes. These are defined by linear difference equationswith constant coefficients.
As our example we shall consider the ARMA(1,1) process. Higher-order ARMA
processes will be discussed in Chapter 3.

Definition 2.3.1 Thetimeseries {X,} isan ARMA(1, 1) processif it is stationary and satisfies (for
every t)

- ¢Xl—l =Z + ezt—ly (231)
where {Z,} ~ WN(0,02) and ¢ + 6 # 0.

Using the backward shift operator B, (2.3.1) can be written more concisely as
$(B)X, = 0(B)Z,, (2.3.2)
where ¢ (B) and 6(B) are the linear filters
$(B)=1—¢pBandod(B) =1+ 0B,

respectively.

Wefirst investigate the range of values of ¢ and 6 for which a stationary solution
of (2.3.1) exists. If |¢| < 1, let x(z) denote the power series expansion of 1/¢(z),
i.e, Z ° o ®’z/, which has absolutely summable coefficients. Then from (2.2.7) we
concl ude that x (B)¢(B) = 1. Applying x (B) to each side of (2.3.2) therefore gives

X, = x(B)0(B)Z, = Y (B)Z,,

where
Y (B) = Zw,31—1+¢3+¢32 ) (1+6B).

By multiplying out the right-hand side or using (2.2.6), we find that
Yo=1andy; = (¢ +0)¢' " for j > 1.
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Asin Example 2.2.1, we conclude that the MA (o) process

o]

X, =Z+@+0)) ¢/ Z_; (2.3.3)

j=1

is the unique stationary solution of (2.3.1).

Now supposethat |¢| > 1. Wefirstrepresent 1/¢ (z) asaseriesof powersof z with
absolutely summable coefficients by expanding in powers of z~2, giving (Problem
2.7)

Then we can apply the same argument as in the case where |¢| < 1 to obtain the
unique stationary solution of (2.3.1). Welet x (B) = — 72, ¢~/ B~/ and apply x (B)
to each side of (2.3.2) to abtain

X, = x(B(B)Z, = —0¢"Z, — O+ ¢) Y ¢ Z. (2.3.4)
j=1

If ¢ = +1, thereis no stationary solution of (2.3.1). Consequently, there is no
such thing as an ARMA(1,1) process with ¢ = +1 according to our definition.

We can now summarize our findings about the existence and nature of the sta-
tionary solutions of the ARMA(1,1) recursions (2.3.2) asfollows:

e A stationary solution of the ARMA(1,1) equations existsif and only if ¢ # +1.

o If |¢| < 1, then the unique stationary solution is given by (2.3.3). In this case we
say that {X;} iscausal or acausal function of {Z,}, since X; can be expressed in
terms of the current and past values Z,, s < ¢.

o If |¢| > 1, then the unique stationary solution is given by (2.3.4). The solutionis
noncausal, since X, isthen afunction of Z;, s > .

Just as causality meansthat X, isexpressibleintermsof Z;, s < ¢, thedual con-
cept of invertibility meansthat Z, isexpressibleintermsof X,, s < ¢. We show now
that the ARMA(1,1) process defined by (2.3.1) isinvertible if |9] < 1. To demon-
strate this, let £(z) denote the power series expansion of 1/6(z), i.e,, Y72 o(—0)/2/,
which has absolutely summable coefficients. From (2.2.7) it therefore follows that
&(B)9(B) = 1, and applying £ (B) to each side of (2.3.2) gives

Z, =§(B)p(B)X, = m(B)X,,

where

w(B) =Y 7B/ = (1- 6B+ (=0)°B?+--) (1 ¢B).
Jj=0
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By multiplying out the right-hand side or using (2.2.6), we find that
Z, =X, —(@+0)) (—0)7'X,_;. (2.3.5)
j=1

Thusthe ARMA(1,1) processisinvertible, since Z, can be expressed in terms of the
present and past values of the process X,, s < ¢t. An argument like the one used to
show noncausality when |¢| > 1 showsthat the ARMA(1,1) processisnoninvertible
when |0] > 1, since then

o0

Z, =07 X, + 0+ ¢) Y (-0 X, (2.3.6)

j=1

We summarize these results as follows;

o If]0] < 1,thenthe ARMA(1,1) processisinvertible, and Z, isexpressed interms
of X,,s <, by (2.3.5).

e If 0] > 1, thenthe ARMA(1,1) processisnoninvertible, and Z, isexpressed in
termsof X, s > ¢, by (2.3.6).

Remark 1. Inthecasest = +1, the ARMA(L,1) processisinvertible in the more
general sensethat Z, isamean square limit of finitelinear combinationsof X, s < ¢,
although it cannot be expressed explicitly asan infinite linear combination of X, s <
t (see Section 4.4 of TSTM). In this book the term invertible will always be used in
the more restricted sensethat Z, = 3727, X, ;, where 372 |rr;| < oo. O

Remark 2. If the ARMA(1,1) process {X,} is noncausal or noninvertible with
|#] > 1, then it is possible to find a new white noise sequence {W,} such that {X,}
is a causal and noninvertible ARMA(1,1) process relative to {W,} (Problem 4.10).
Therefore, from asecond-order point of view, nothingislost by restricting attentionto
causal and invertible ARMA(1,1) models. Thislast sentenceisaso valid for higher-
order ARMA models. O

2.4 Properties of the Sample Mean and Autocorrelation Function

A stationary process {X,} ischaracterized, at |east from a second-order point of view,
by itsmean . and its autocovariance function y (-). The estimation of u, v (), and the
autocorrelation function p(-) = y(-)/y(0) from observations X4, ..., X, therefore
plays a crucial role in problems of inference and in particular in the problem of
constructing an appropriate model for the data. In this section we examine some of
the properties of the sample estimates x and p(-) of 1 and p(-), respectively.
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Proposition 2.4.1

2.4.1 Estimation of p
The moment estimator of the mean w of a stationary process is the sample mean
X,=n X1+ Xo+ -+ X,). (2.4.1)
It is an unbiased estimator of ., since
EX,)=nYEX1+ - +EX,)=p
The mean squared error of X, is

E(Xn - /-’L)z = Var()_(n)

‘2ZZCOV(X,, X))

i=1 j=

=n? Y (n—li—jhyl—J)

i—j=-n

=nt Z <1 — @) (h). (2.4.2)

h=-—n

Now if y(h) — 0 ash — oo, the right-hand side of (2.4.2) converges to zero,
so that X, converges in mean square to u. If 3°5° |y (k)| < oo, then (2.4.2)
gives lim,_, . nVar(X,) = Zlh|<ooy(h). We record these results in the following
proposition.

If {X,} is a stationary time series with mean n and autocovariance function y (- ),
thenasn — oo,
Var(X,) = E(X, —n)> — 0 if y(n)— 0,

nEX, —w?— Y vk if Yy < ce.

|h|<oo h=—00

To make inferences about . using the sample mean X, it is necessary to know
the distribution or an approximation to the distribution of X,,. If the time series is
Gaussian (see Definition A.3.2), then by Remark 2 of Section A.3 and (2.4.2),

(X, — ) ~ (0 > (1 - —) y(h)) :
|h|<n

It is easy to construct exact confidence bounds for w using this result if y(.) is
known, and approximate confidence bounds if it is necessary to estimate y (-) from
the observations.
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Example 2.4.1

For many time series, in particular for linear and ARMA models, X, is approxi-
mately normal with mean .. and variance n=* > hj<oo ¥ (h) fOr largen (see TSTM, p.
219). An approximate 95% confidence interval for n isthen

(X, — 1L.96v"?//n, X, + 1.96v2//n) , (2.4.3)

wherev =}, _, v (h). Of course, v isnot generally known, so it must be estimated
from the data. The estimator computed in the program ITSM isd = >, _ ﬁ(l -
|h|/n)7 (h). For ARMA processes thisis agood approximation to v for largen.

An AR(1) model
Let {X,} bean AR(1) process with mean w, defined by the equations
X —n=0¢Xi21— )+ 7,

where |¢| < 1 and {Z,} ~ WN(0,o?). From Example 2.2.1 we have y(h) =
P"o?/(1—¢? andhencev = (1+2) ;7 ¢")o?/(1—¢?) = 02/(1— ¢)?. Approx-
imate 95% confidence bounds for . are therefore given by x, +1.960nY2/(1 — ¢).
Since ¢ and o are unknown in practice, they must be replaced in these bounds by
estimated values. O

2.4.2 Estimation of () and p(-)

Recall from Section 1.4.1 that the sample autocovariance and autocorrelation func-
tions are defined by

n—|h|

Py =n"" > (Xipn — X)) (X — X,) (2.4.4)
t=1
and
. y (h)
hy = T—. 245
p(h) Z0) (2.4.9)

Boththeestimatorsy (k) and p (h) arebiased evenif thefactor n=tin (2.4.4) isreplaced
by (n — h)~1. Nevertheless, under general assumptions they are nearly unbiased for
large sample sizes. The sample ACVF has the desirable property that for eachk > 1
the k-dimensional sample covariance matrix

y(0) y@® o pk=1)
y (1 v (0 e (k=2
- J/(: ) J/(: ) 7( | ) (2.46)
yk-1) yk-2) --- 70

is nonnegative definite. To see this, first note that if ', is nonnegative definite, then
', is nonnegative definite for all k < m. So assume k > n and write

[,=n"1TT,
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where T isthe k x 2k matrix

0 .- 0 0 Vv, Y, --- Y
0O --- 0 "B Y - Y O

T: . . ’
0O v, Y --- Y, 0.-- 0

Yi=X;—X,,i=1,...,n,andY; =0fori =n+1,..., k. Thenforany rea k x 1
vector a we have

al,a=n"@7)(Ta) >0, (2.4.7)

and consequently the sample autocovariance matrix I, and sample autocorrelation
matrix

Ry =T/y(0) (24.8)

are nonnegative definite. Sometimes the factor n=* is replaced by (n — #)~1 in the
definition of 7 (h), but the resulting covariance and correlation matrices I', and R,
may not then be nonnegative definite. We shall therefore use the definitions (2.4.4)
and (2.4.5) of 7 (k) and p(h).

Remark 1. The matrices I, and R, arein fact nonsingular if thereis at least one
nonzeroY;, or equivalently if  (0) > 0. To establish thisresult, supposethat  (0) > 0
and I issingular. Thenthereisequality in (2.4.7) for somenonzerovector a, implying
that @7 = 0 and hence that the rank of T islessthan k. Let ¥; be the first nonzero
valueof Y1, Y», ..., Y, and consider the k x k submatrix of T' consisting of columns
(i + 1) through (i + k). Since this matrix islower right triangular with each diagonal
element equal to Y;, its determinant has absolute value |Y; ¥ # 0. Consequently, the
submatrix is nonsingular, and 7 must have rank &, a contradiction. O

Without further information beyond the observed data X, ..., X, it isimpos-
sible to give reasonable estimates of y (k) and p(h) for h > n. Even for 4 dightly
smaller than n, theestimates y (k) and p (k) areunreliable, sincethere are so few pairs
(X141, X,) available (only oneif h = n — 1). A useful guideis provided by Box and
Jenkins (1976), p. 33, who suggest that » should be at least about 50 and i < n/4.

The sample ACF plays an important role in the selection of suitable models for
the data. We have already seen in Example 1.4.6 and Section 1.6 how the sample
ACF can be used to test for iid noise. For systematic inference concerning p(h),
we need the sampling distribution of the estimator (k). Although the distribution
of p(h) isintractable for samples from even the simplest time series models, it can
usually be well approximated by a normal distribution for large sample sizes. For
linear models and in particular for ARMA models (see Theorem 7.2.2 of TSTM for
exact conditions) p, = (p(1), ..., p(k))" isapproximately distributed for large n as
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Example 2.4.2

Example 2.4.3

N(pi,n W), i.e,
p~ N(p, n_1W), (2.4.9

where p = (p(1), ..., p(k))’, and W isthe covariance matrix whose (i, j) element
is given by Bartlett’sformula

o0

wy = Y [pk+Dpk+ )+ ok —i)pk+ )+ 20()p()0p%(K)

k=—00

—2p)p®)pk + j) —20(Hp&)pk +i)}.
Simple algebra shows that

oo

wy =) (pt+)+plk —i) = 2p(D)p k)

k=1
x{ptk+ j) + pk — j) = 2p(j)p(K)}, (2.4.10)
which is a more convenient form of w;; for computational purposes.

iid Noise
If {X,} ~11D(0, o), then p(h) = Ofor |1| > 0, so from (2.4.10) we obtain
{1 ifi = j,
wij =
0 otherwise.
For largen, therefore, p(1), ..., p(h) are approximately independent and identically

distributed normal random variables with mean 0 and variance n~1. This result is
the basis for the test that data are generated from iid noise using the sample ACF
described in Section 1.6. (See also Example 1.4.6.) |
An MA(T) process
If {X,} isthe MA(1) process of Example 1.4.4, i.e., if

X, =Z,+60Z,,, t=0,41, ...,
where {Z,} ~ WN(0, ¢?), then from (2.4.10)

1—3p%(1) +4p*(1), ifi=1,
= 1+ 2p2%(1), ifi > 1,

is the approximate variance of n=Y?(p(i) — p(i)) for large n. In Figure 2.1 we have
plotted the sample autocorrelation function p(k), k = 0, ..., 40, for 200 observations
from the MA (1) model

X, =Z — 8Z_1, (2.4.11)

where {Z,} isasequence of iid N(0, 1) random variables. Here p(1) = —.8/1.64 =
—.4878 and p(h) = O for h > 1. The lag-one sample ACF is found to be p(1) =



62 Chapter 2

Stationary Processes

Figure 2-1

The sample autocorrelation
function of n = 200
observations of the MA(1)
process in Example 2.4.3,
showing the bounds
+1.96n~2(1 4+ 2p2(1))"2.

Example 2.4.4

0.8 1.0
T

0.6
T

0.4

ACF

Lag

—.4333 = —6.128rn~1/2, which would cause us (in the absence of our prior knowledge
of {X,}) toreject the hypothesisthat the data are asample from aniid noise sequence.
Thefact that |p(h)| < 1.96n"Y?forh = 2, ..., 40 strongly suggests that the dataare
from amodel in which observationsare uncorrelated past lag 1. In Figure 2.1 we have
plotted the bounds £1.96n ~Y/?(1+2p2(1))*/?, indicating the compatibility of the data
with the model (2.4.11). Since, however, p (1) isnot normally known in advance, the
autocorrelationsp(2), . . ., p(40) wouldin practice have been compared withthemore
stringent bounds +1.96rn /2 or with the bounds +1.96n~2(1+252(1))2 in order to
check the hypothesisthat the dataare generated by amoving-average processof order
1. Finally, itisworth noting that thelag-one correlation —.4878 iswell inside the 95%
confidence bounds for p(1) given by p(1) £ 1.96n=Y2(1 — 3p%(1) + 4p*(1)¥? =
—.4333 + .1053. This further supports the compatibility of the data with the model
X,=27,—0.8Z_;. O

An AR(T) process
For the AR(1) process of Example 2.2.1,
X = ¢Xt—1 + Z,,
where {Z,} isiid noiseand |¢| < 1, we have, from (2.4.10) with p(h) = ¢/,
wi =Y % (67— "7+ Y ¢ (9 — ¢)°
k=1 k=i+1

= (1-¢%)(1+¢))(1— ¢ " - 2i¢?, (2.4.12)
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Figure 2-2 . | | | o ‘ HT m
The sample autocorrelation of 2 B -
function of the Lake Huron ?
residuals of Figure 1.10 <
showing the bounds Sl | 1 | |
p()£1.96n""2w;,/* and the 0 10 20 30 40
model ACF p(i) = (.791)". Lag
i =12 ....In Figure 2.2 we have plotted the sasmple ACF of the Lake Huron
residuals y, ..., yog from Figure 1.10 together with 95% confidence bounds for

p@),i=1,...,40, assuming that data are generated from the AR(1) model
Y, =.791Y, 1 + Z, (2.4.13)

(see equation (1.4.3)). The confidence bounds are computed from 5 (i) + 1.96n~%2
w;/?, where w;; isgivenin (2.4.12) with ¢ = .791. The model ACF, p(i) = (.791),
is aso plotted in Figure 2.2. Notice that the model ACF lies just outside the confi-
dence bounds at lags 2—6. This suggests some incompatibility of the data with the
model (2.4.13). A much better fit to the residuals is provided by the second-order
autoregression defined by (1.4.4). O

2.5 Forecasting Stationary Time Series

We now consider the problem of predicting the values X,,,, # > 0, of a station-
ary time series with known mean u and autocovariance function y in terms of the
values {X,, ..., X1}, up to time n. Our god is to find the linear combination of
1, X,, X,_1, ..., X1, that forecasts X, , with minimum mean squared error. The best
linear predictor intermsof 1, X,,, ..., X; will bedenoted by P, X, ., and clearly has
theform

Pan+h =ap+ aan =+ -+ a,,Xl. (251)
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It remains only to determine the coefficients ag, as, . . ., a,, by finding the values that
minimize

S(ao, ...,a,) = E(Xpsp —ap — a1 X, — -+ — a, X1)% (2.5.2)
(We dready know from Problem 1.1 that P,Y = E(Y).) Since S is a quadratic
function of ay, ..., a, and is bounded below by zero, it is clear that there is at |east

onevalueof (ao, ..., a,) that minimizes S and that theminimum (aq, . . ., a,) satisfies
the equations

dS(ag, ..., a,)
8Clj

-0, j=0,....n (2.5.3)

Evaluation of the derivatives in equations (2.5.3) gives the equivaent equations

E |:Xn+h —ap— Zaan+li:| =0, (2.5.4)
i—1

i=1

E[<xn+h—ao—2a,»xn+1,»>x,1+1,}=o, j=1...n. (255

These equations can be written more neatly in vector notation as

ag= (l — Zn:ai) (2.5.6)

and
r,a, =v.(h), (2.5.7)
where
&, = (a1, ..., a,), Ly =y — DI
and
Yu(h) = (y (), y(h+1),...,y(h+n—1)).
Hence,

PiXpin =+ Y ai(Xup1i — 1), (25.9)
i=1

where a, satisfies (2.5.7). From (2.5.8) the expected value of the prediction error
X,in — P, X4 iSZero, and the mean square prediction error is therefore

E(Xysn — PiXun)? =y(0) = 2) "aiyh+i =1+ > > ayi — ja;
i=1 i=1 j=1

= y(0) — a7, (h), (2.5.9)
where the last line follows from (2.5.7).
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Example 2.5.1

Remark 1. To show that equations (2.5.4) and (2.5.5) determine P, X,,,, uniquely,
let {ai¥,j =0,....n} and {a??, j = 0,...,n} betwo solutions and let Z be the
difference between the correspondl ng predlctors, i.e,

1 2 1 2
_a(<)> <>+Z(<> <>> 1

Then

72 _ 7 ( @ _ (2)"'2( o _ <2>) n+lj>-

But from (2.5.4) and (2.5.5) wehave EZ = 0and E(ZX,41-;) =0forj =1,...,n
Consequently, E(Z?) = 0 and hence Z = 0. O

Propertiesof P, X, 44 :
1 P Xpsn = 4+ 3 ai(Xyp1-i—p), wherea, = (a1, ..., a,) satisfies(2.5.7).

2. E(Xyin — PuXuin)? = y(0) — &, (h), where~, (h) = (y(h), ...,y (h+n—
1))

3. E(Xyin — PuXugn) = 0
4. E[(Xpin — PiXus)X;1=0,j=1,....n

Remark 2. Notice that properties 3 and 4 are exactly equivalent to (2.5.4) and
(2.5.5). They can be written more succinctly in the form

E[(Error) x (PredictorVariable)] = 0. (2.5.10)

Equations (2.5.10), one for each predictor variable, therefore uniquely determine
Pn Xn+h- O

One-step prediction of an AR(1) series
Consider now the stationary time series defined in Example 2.2.1 by the equations
XZZ¢XI—1+Ztv t:O7:|:17"-7

where [¢| < 1 and {Z,} ~ WN(0, ¢?). From (2.5.7) and (2.5.8), the best linear
predictor of X, intermsof {1, X,,, ..., X }is(forn > 1)

Pan+1 = a-:/lxna
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where X, = (X,,, ..., X;) and

oy o] [
: : : : :2 - ¢ ’ (25.11)
ot o2 g 1 || o
A solution of (2.5.11) is clearly
a, = (¢,0,...,0),
and hence the best linear predictor of X, intermsof {X,,..., X,}is

Pt1Xn+l - a;,Xn == ¢Xn’

with mean squared error

0.2

1-—¢?
A simpler approach to this problem isto guess, by inspection of the equation defining
X .11, that the best predictor is¢ X,,. Thento verify this conjecture, it sufficesto check
(2.5.10) for each of the predictor variables 1, X,,, ..., X;. The prediction error of the
predictor ¢ X, isclearly X,,;1 — ¢X, = Z,;1. B E(Z,.1Y) = 0forY = 1 and for
Y =X;,j=1,...,n. Hence by (2.5.10), ¢ X, is the required best linear predictor
intermsof 1, X4, ..., X,. O

—py(D) =02

E(Xyi1— P X112 =y(0) — & 7,(1) =

Prediction of Second-Order Random Variables

Suppose now that Y and W, ..., W; are any random variables with finite second
moments and that the means © = EY, u; = EW, and covariances Cov(Y,Y),
Cov(Y, W;), and Cov(W;, W;) areall known. It is convenient to introduce the random
vector W = (W,, ..., Wy)’, the corresponding vector of means uw = (s, ..., 1),
the vector of covariances

~ = Cov(Y, W) = (Cov(Y, W,), Cov(Y, W,_1), ..., Cov(Y, Wy))/,
and the covariance matrix

I = Cov(W, W) = [CoV(Wy 15, Wasa- D], -
Then by the same arguments used in the calculation of P, X,,,, the best linear pre-
dictor of Y intermsof {1, W,,, ..., W,} isfound to be

PY W) = puy +a(W — py), (25.12)
wherea = (ay, ..., a,)’ isany solution of

Fra=~. (2.5.13)
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The mean squared error of the predictor is
E[(Y — P(YIW))?] = Var(Y) — a~. (2.5.14)
Example 2.5.2  Estimation of a missing value

Consider again the stationary series defined in Example 2.2.1 by the equations

XZZ¢XI—1+Ztv t:O7:l:17"-7

where |¢| < 1and {Z,} ~ WN(O, o). Suppose that we observe the series at times
1 and 3 and wish to use these observations to find the linear combination of 1, X,
and X3 that estimates X, with minimum mean squared error. The solution to this
prablem can be obtained directly from (2.5.12) and (2.5.13) by setting Y = X, and
W = (Xi, X3)'. This gives the equations

Exin

with solution

__ 1 |9
—_—

The best estimator of X5 isthus

¢
1+ ¢2

with mean squared error

P(X,|W) = (X1 + X3),

po?
2 A2 2
E[(X; — P(Xo]W))?] = 1i—¢2 -a 1¢a(§ - 1i¢2' -
1 g2

The Prediction Operator P(-|W)

For any given W = (W,, ..., Wy)’ and Y with finite second moments, we have seen
how to compute the best linear predictor P(Y|W) of Y intermsof 1, W,, ..., W
from (2.5.12) and (2.5.13). The function P (-|W), which corverts Y into P(Y|W),
is called a prediction operator. (The operator P, defined by equations (2.5.7) and
(2.5.8) is an example with W = (X,,, X,,_1, ..., X1)".) Prediction operators have a
number of useful properties that can sometimes be used to simplify the calculation
of best linear predictors. We list some of these below.
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Example 2.5.3

Example 2.5.4

Properties of the Prediction Operator P(-|W):

Suppose that EU? < oo, EV? < oo, T' = cov(W, W), and 8, a1, ..., a, are
constants.

1. PUIW)=EU+a(W — EW), wherel"a = cov(U, W).
E[(U — P(UW))W] = 0and E[U — P(U|W)] = 0.
E[(U — P(U|W))?] = var(U) — a’cov(U, W).

P(anU + oV + BIW) = a1 P(U|W) + a2 P(V|W) + B.
P(Y i oW+ BIW) =37 oy W, + B.

P(U|W) = EU if cov(U,W) = 0.

PWUI|W) = P(P(U|W, V)|W) if V isarandom vector such that the compo-
nentsof E(VV’) areal finite.

N o g b~ w DN

One-step prediction of an AR(p) series
Suppose now that {X,} is a stationary time series satisfying the equations
Xt:¢lXt—1+”‘+¢pr—p+Zt’ tzo’:tly-"’

where {Z,} ~ WN(0, 0?) and Z, is uncorrelated with X, for each s < r. Then if
n > p,wecan apply the prediction operator P, to each side of the defining equations,
using properties (4), (5), and (6) to get

PanH-l = ¢1Xn +---+ ¢an+1—p' O

An AR(1) series with nonzero mean

Thetime series{Y,} issaid to bean AR(1) processwithmean w if {X, = Y, — u}isa
zero-mean AR(1) process. Defining {X,} asin Example2.5.1and letting Y, = X, +u,
we see that Y, satisfies the equation

Yi—p=¢Y,.1—w)+ 2. (2.5.15)

If P,Y,., isthe best linear predictor of Y,,, interms of {1, Y,, ..., Y1}, then appli-
cationof P, to (25.15) withr =n +1,n + 2, ... givesthe recursions

PnYn-&-h_//L:‘p(PnYn-ﬁ-h—l_M)’ h=1, 2»

Noting that P, Y, = Y,, we can solve these equations recursively for P,Y,,
h=12,... toobtan

P Yyin =p+ ¢h(Yn — ). (2516)
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The corresponding mean squared error is (from (2.5.14))
E(YrH-h - PnYn+h)2 = V(O)[l - a;,pn (h)] (2517)

From Example 2.2.1 we know that y(0) = 02/(1 — ¢?) and p(h) = ¢",h > 0.
Hence, substituting a, = (4", 0, ..., 0)" (from (2.5.16)) into (2.5.17) gives

EYuin — PuYoin)® = 0?(1—¢?)/(1— ¢7). (25.18)
O

Remark 3. Ingenerd, if {Y,} isastationary time serieswith mean . and if {X,} is
the zero-mean series defined by X, = ¥, — u, then since the collection of all linear
combinationsof 1, Y,, ..., Y; isthesameasthecollection of al linear combinationsof
1, X,,..., Xy, thelinear predictor of any randomvariable W intermsof 1, Y,,, ..., Y3
isthe same asthe linear predictor intermsof 1, X,,, ..., X;. Denoting this predictor
by P,W and applying P, to theequation Y, ., = X4, + u gives

PIIYVl+h = + Pan+h- (2519)

Thus the best linear predictor of Y,., can be determined by finding the best linear
predictor of X, andthenadding 1. Notefrom (2.5.8) that since E(X;) = 0, P, X .4,
isthe same as the best linear predictor of X,,,, intermsof X,,, ..., X; only. O

2.5.1 The Durbin-Levinson Algorithm

In view of Remark 3 above, we can restrict attention from now on to zero-mean
stationary time series, making the necessary adjustments for the mean if we wish
to predict a stationary series with nonzero mean. If {X,} is a zero-mean stationary
series with autocovariance function y (-), then in principle the equations (2.5.12)
and (2.5.13) completely solve the problem of determining the best linear predictor
P, X, of X, intermsof {X,, ..., X1}. However, the direct approach requiresthe
determination of a solution of a system of n linear equations, which for large n may
be difficult and time-consuming. In cases where the process is defined by a system
of linear equations (as in Examples 2.5.2 and 2.5.3) we have seen how the linearity
of P, can be used to great advantage. For more general stationary processesit would
be helpful if the one-step predictor P, X, .1 based on n previous observations could
be used to simplify the calculation of P,.1X,,», the one-step predictor based on
n + 1 previous observations. Prediction algorithmsthat utilize thisidea are said to be
recursive. Two important examples are the Durbin-Levinson algorithm, discussed
in this section, and the innovations algorithm, discussed in Section 2.5.2 below.
We know from (2.5.12) and (2.5.13) that if the matrix T", is nonsingular, then

Pan+1 = ¢;,Xn = ¢ann +-+ ¢nnX17
where

d)n = F,:17n7
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Y. = (y(D), ..., y(n)), and the corresponding mean squared error is
v, .= E(Xn+l - Pan+1)2 = V(O) - ¢;l'7n'

A useful sufficient condition for nonsingularity of all the autocovariance matrices
', Ty, ...isy(0) > 0and y(h) — O0ash — oo. (For aproof of this result see
TSTM, Proposition 5.1.1.)

The Durbin-Levinson Algorithm:
The coefficients ¢,.1, . . . , ¢, Can be computed recursively from the equations
B n—1
¢nn = )/(I’l) - Z‘Pn—l,jy(n - ])i| vn__l]_, (2520)
L j=1
¢nl ] ¢n71,1 ¢n71,n71
: = : — Gun : (2.5.21)
d’n,nfl | ¢n71,n71 ¢n71,1
and
vy = e[l —62,]. (2.5.22)
where ¢11 = ¥ (1)/y(0) and vo = y (0).

Proof Thedefinition of ¢4, ensuresthat the equation
R, = pn (25.23)

(where p, = (p(D), ..., p(n))) issatisfied for n = 1. Thefirst step in the proof isto
show that ¢,,, defined recursively by (2.5.20) and (2.5.21), satisfies (2.5.23) for all n.
Suppose thisistrue for n = k. Then, partitioning R;_; and defining

p = (pk), pk = 1), ..., p(D))
and

" = s Bri-1, - - D11 s
we see that the recursions imply

| R Pl(cr) b — ¢k+1,k+1¢1(¢r)
Rij1idesr=| ) 1
Pk

¢k+1,k+1

(r) (r)
_ (;)Ok — Gk 1h+1P% (‘)“ ¢(I<J)rl,k+lpk
- r)s r)s r
P Pk — Gryris1Py Py + Pririsn

= Pk+1,
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as required. Here we have used the fact that if R ¢ = px, then Rp\” = p\”. This
is easily checked by writing out the component equations in reverse order. Since
(2.5.23) issdtisfied for n = 1, it follows by induction that the coefficient vectors ¢,
defined recursively by (2.5.20) and (2.5.21) satisfy (2.5.23) for dl n.

It remains only to establish that the mean squared errors

Uy = E(Xn+1 - d);xn)z

satisfy vo = y(0) and (2.5.22). Thefact that vy = y (0) isan immediate consequence
of the definition PoX;, := E(X;1) = 0. Since we have shown that ¢/ X, is the best
linear predictor of X,_,, we can write, from (2.5.9) and (2.5.21),

Uy = V(O) - ¢:, Vn = V(O) - ¢:,_1'7n71 + ¢nn¢,(1ri/1'7nfl — Puny (n).
Applying (2.5.9) again gives

UV, = Vp1+ (pnn (Qbfl'z/]_’)/nfl - V(”)) s
and hence, by (2.5.20),
Up = Up—1 — ¢3n (V(O) - ¢:17]_’Ynfl) = Up—1 (1 - d)sn) . n

Remark 4. Under the conditions of the proposition, the function defined by «(0) =
landa(n) = ¢, n = 1,2, ..., isknown as the partial autocorrelation function
(PACF) of {X,}. It will be discussed further in Section 3.2. Of particular interest is
equation (2.5.22), which shows the relation between a(n) and the reduction in the
one-step mean squared error as the number of predictors is increased fromn — 1
ton. a

2.5.2 The Innovations Algorithm

The recursive algorithm to be discussed in this section is applicable to all series
with finite second moments, regardless of whether they are stationary or not. Its
application, however, can be simplified in certain special cases.
Suppose then that {X,} is a zero-mean series with E|X,|?> < oo for each t and

E(X;X;) =«(, j). (2.5.24)
It will be convenient to introduce the following notation for the best one-step predic-
tors and their mean squared errors:

0, ifn=1,

P,_1X,, 1fn=23 ...,

%, =

and
vy = E(Xup1 = P X0i0)%

We shall also introduce the innovations, or one-step prediction errors,
U, = X, — X,..
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Intermsof thevectorsU,, = (Uy, ..., U,) and X, = (X4, ..., X,)’ thelast equations
can be written as

Un - Anxna (2525)
where A,, hastheform
[ 1 0 0 0]
aln 1 0 0
A, = azp ann 1 0
: 0
ayp-1n-1 Ap-1p-2 Ap-15n-3 tee 1

(If {X,} isstationary, then a;; = —a; witha; asin (2.5.7) with h = 1.) Thisimplies
that A, isnonsingular, with inverse C, of the form

1 0 0
611 1 0
C, = 022 021 1

RO OOO

9}171,’171 anl,n72 9,,,1,,,,3

The vector of one-step predictors X, ‘= (X1, PyXo, ..., P, 1X,) can therefore be
expressed as

X, =X, -U,=CU, U, =86, (xn - x) : (2.5.26)
where
[ o 0 0 0]
011 0 0 0
0, = 022 01 0 0
. . . 0
9}171,1171 enfl,n72 enfl,n73 0

and X, itself satisfies

X, = C, (xn - x) . (2.5.27)
Equation (2.5.26) can be rewritten as
0, ifn=0,
X’Hrl - Z Qﬂj (Xn+1—j - Xvn-kl—j) ’ ifn= 1’ 2’ crt (2528)
j=1

from which the one-step predictors X, X, ... can be computed recursively once
the coefficients ;; have been determined. The following algorithm generates these



2.5 Forecasting Stationary Time Series 73
coefficients and the mean squared errors v; = E(X;11 — 5(,41)2, starting from the
covariances k (i, j).

The Innovations Algorithm:
The coefficients 6,1, . . ., 6,, can be computed recursively from the equations
vo =« (1,1),
k=1
Ot =V (K(n +Lk+1) - Zek,k,-en,n,-vj) . 0<k<n,
j=0
and
n—1
v, =k(m+1ln+1 — Zginﬁvi'
j=0
(Itisatrivial matter to solvefirst for vy, then successively for 611, vi; 02,01, vVo; a3,
O30, 031, V3; . .. .)
Proof See TSTM, Proposition 5.2.2. [ |

Example 2.5.5

Remark 5. While the Durbin-Levinson recursion gives the coefficients of
X,,..., X1 in the representation 5(n+1 = Z’]’.Zl ¢nj Xn41-;, the innovations ago-
rithm gives the coefficients of (X, — X,.), ..., (X1 — X1), in the expansion X1 =
> 160 (Xps1-j — X1 j)- Thelatter expansion has anumber of advantages deriv-
ing from the fact that the innovations are uncorrel ated (see Problem 2.20). It can also
be greatly simplified in the case of ARMA(p, q) series, as we shall see in Section
3.3. Animmediate consequence of (2.5.28) isthe innovations representation of X1
itself. Thus (defining 6,0 := 1),

A

Xpi1 = Xp41 — Xvn_H_ + )A(,H_l = 29"‘7 (Xn+1—j — Xn_;,_j__j) , n=0,12,.... O
=0

Recursive prediction of an MA(T1)
If {X,} isthetime series defined by
Xi=Z+6Z1.{Z} ~WN(0,0?),

then ki, j) = Ofor |i — j| > 1, k(i,i) = 0?(1+6%), and «(i,i + 1) = o2
Application of the innovations algorithm leads at once to the recursions

9"]20725,].5”’
01 = U;}1902’

vo = (14 6?02,
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and
v = [1+ 6% — v, 10%%] 0%
For the particular case
X, =27,—-09Z,_,, {Z;}~WN(Q,1),
the mean squared errorsv,, of )A(,Hl and coefficients6,;, 1 < j < n,intheinnovations
representation

)A(nJrl = Zgnj (Xn+17j - 5‘("+17j) = 0On (Xn - Xn)
=1

are found from the recursions to be as follows:

vo = 1.8100,

011 = —.4972, v, = 1.3625,

921 = —6606, 922 = 0, Vo = 12155,

931 = —.7404, 932 = 0, 933 = O, V3 = 11436,

941 = —7870, 942 = 0, 943 = O, 944 = O, Vg = 1.1017.

If we apply the Durbi L evinson algorithm to the same problem, wefind that the
mean squared errors v, of X, ., and coefficients¢,;, 1 < j < n, intherepresentation

n
XrH—l = E ¢ann+l—j
Jj=1

are asfollows;

vo = 1.8100,

¢ = —.4972, vy = 1.3625,

¢n = —.6606, ¢p=-—.3285 v, =1.2155

P31 = —.7404, ¢y = —.4892, ¢33 = —.2433, v3 = 1.1436,

¢a1 = —.7870, ¢ = —.5828, ¢4z =—.3850, ¢ay = —.1914, v, = 1.1017.

Noticethat asn increases, v, approachesthe white noise variance and 6,,; approaches
6. Theseresults hold for any MA(1) processwith |§| < 1. Theinnovations agorithm
is particularly well suited to forecasting MA(q) processes, since for them 6,; = 0
forn — j > ¢g. For AR(p) processes the Durbin—Levinson algorithm is usually more
convenient, since ¢,,; = 0forn — j > p. a

Recursive Calculation of the h-Step Predictors
For h-step prediction we use the result

P,(Xp4k — Pogk—1 X)) =0, k=1 (2.5.29)
Thisfollows from (2.5.10) and the fact that

E[(Xpsk = Poi—1Xnik — 0 X451l =0, j=1,....n
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Hence,
PoXoin = PoPoyn—1Xuqn
= [z}(n+h

n+h—1 R
=P, Z Ontn—1.j (Xn+h7j - Xn+h7j> .
=1

Applying (2.5.29) again and using the linearity of P, we find that

n+h—1

P Xuin = Z Onth-1, (Xn+h7j - )A(thj) , (2.5.30)
=h

where the coefficients 6,; are determined as before by the innovations algorithm.
Moreover, the mean squared error can be expressed as

E(Xyin — PuXpi1)?> = EX2,, — E(P,X,40)°

n+h—-1
=km+hn+h) = Y 02, 4 Vepnj1. (2531)

j=h

2.5.3 Prediction of a Stationary Process in Terms of Infinitely Many Past
Values

It is often useful, when many past observations X,,,, ..., Xo, X1,..., X, (m < 0)
are available, to evaluate the best linear predictor of X, intermsof 1, X,,, ..., Xo,
..., X,,. This predictor, which we shall denote by P, ,X,.,, can easily be evaluated
by the methods described above. If |m| is large, this predictor can be approximated
by the sometimes more easily calculated mean square limit

[%)(n+h = lim F%un)(n+h-
m——00

We shall refer to P, as the prediction operator based on the infinite past, {X;,
— oo <t < n}. Analogously we shall refer to P, asthe prediction operator based
on thefinite past, {X4, ..., X,}. (Mean sguare cornvergence of random variablesis
discussed in Appendix C.)

Determination of P, X,
Like P, X, ., the best linear predictor P,X, ., when {X,} is a zero-mean stationary
process with autocovariance function y (-) is characterized by the equations

E |:(Xn+h - PIIXH-‘y-h) Xn+1—i] = 07 i = la 27 e

If we can find asolution to these equations, it will necessarily be the uniquely defined
predictor P,X,.,. An approach to this problem that is often effective is to assume
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that P, X, can be expressed in the form
P X = Za,-XnH_,-,
j=1
in which case the preceding equations reduce to
E |:(X,1+h - Za,,»x,,ﬂ_j) X,L+1_,} =0, i=12...,
j=1
or equivaently,
dyli—paj=yh+i-1, i=12....
j=1

Thisisaninfiniteset of linear equationsfor the unknown coefficients; that determine
P, X, ., provided that the resulting series converges.

Propertiesof P,:
Supposethat EU? < o0, EV? < 00,a, b,andc areconstants, and I" = Cov(W, W).
1. E[(U - P,(U)X;]1=0,;j <n.

2. Py(aU +bV +¢) =aP,(U) +bP,(V) +c.

3. P,(U) = U if U isalimit of linear combinations of X, j<n.

4. P,(U) = EU if Cov(U, X,;) = Oforadl j <n.

_ These properties can sometimes be used to simplify the calculation of
P, X1, notably when the process { X;} isan ARMA process.

Example 2.5.7  Consider the causal invertible ARMA(1,1) process {X,} defined by
Xt _¢Xt—l: Zt +9Zt—la {Zl} NWN(OaJZ)

We know from (2.3.3) and (2.3.5) that we have the representations

o0
Xpi1=Zna+ @+0) Y ¢ Zui1
j=1

j=

and

Zyi=Xp1— (@ +0) ) (=0 X1 .
j=1
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Applying the operator P, to the second equation and using the properties of P, gives
PXo1=(@+60) ) (=0 Xy ;.
j=1

Applying the operator P, to the first equation and using the properties of P, gives

]

PXp1=@+0)Y ¢ Zui1 .

j=1
Hence,
X1 — PiXos1 = Zys1,
and so the mean squared error of the predictor P, X1 is EZ? , =02 O

The Wold Decomposition

Consider the stationary process
X, = Acos(wr) + B sin(wt),

wherew € (0, ) isconstant and A, B are uncorrelated random variables with mean
0 and variance . Notice that

X, = (2COSC())X,,_1 — X, o=P,_1X,, n=041,...,

sothat X, — P,_1X, = O for al n. Processes with the latter property are said to be
deterministic.

The Wold Decomposition:

If {X,} isanondeterministic stationary time series, then

X, = ix/szt_j +V, (2.6.1)
j=0

where

1 yo=1and ) 7, ¥? < oo,

2. {Z,} ~ WN (0, 5?),

3. Cov(Z,,V,) =0foradlsandrt,

4. 7, = P, Z, foral r,

5. V,= PV, foralsandt,and

6. {V,} isdeterministic.
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Problems

Here asin Section 2.5, P,Y denotes the best predictor of Y in terms of linear com-
binations, or limits of linear combinations of 1, X, —oco < s < t. The sequences
{Z,}, {¥;}, and {V,} are unique and can be written explicitly as Z, = X, — P_.X,,
v, = E(X.Z,))/E(Z?),and V, = X, = Y72, ¥, Z,_;. (See TSTM, p. 188.) For
most of the zero-mean stationary time series dealt with in this book (in particular for
all ARMA processes) the deterministic component V, is O for all 7, and the seriesis
then said to be purely nondeter ministic.

If X, = U, + Y, where {U;} ~ WN (0,v3), E(U,Y) = Ofor al 7, and ¥ has mean
0 and variance 72, then P,_1X, = Y, since Y isthe mean sguare limit ass — oo of
[X;Z1+- -+ X,_]/s,and E[(X; — Y)X,] = Oforadl s < ¢ — 1. Hence the sequences
in the Wold decomposition of {X,} aregivenby Z, = U,, Yo =1, y; = 0for j > 0,
adV, =Y. O

2.1. Supposethat X1, X, ..., isastationary time serieswith mean . and ACF p(-).
Show that the best predictor of X,,..;, of theforma X, + 5 isobtained by choosing
a=ph)yandb = pn(l— ph)).

2.2. Show that the process
X, = Acos(wt) + BsSin(wt), t=0,41,...

(where A and B are uncorrelated random variables with mean 0 and variance 1
and w isafixed frequency in theinterval [0, r]), is stationary and find its mean
and autocovariance function. Deduce that the function «(h) = coS(wh), h =
0, £1, ..., isnonnegative definite.

2.3. a Findthe ACVF of thetimeseries X, = Z, + .3Z,_1 — .4Z,_,, where {Z,} ~
WN(O, 1).

b. Find the ACVF of the time series ¥, = Z, — 1.2Z, 1 — 1.6Z,_,, where
{Z;} ~ WN(O, .25). Compare with the answer found in (a).

2.4. ltisclear that the function «(h) = 1,h = 0,+£1, ..., is an autocovariance
function, since it is the autocovariance function of the process X, = Z,r =
0, £1, ..., where Z isarandom variable with mean 0 and variance 1. By iden-
tifying appropriate sequences of random variables, show that the following
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25.

2.6.
2.7.

28.

29.

functions are al so autocovariance functions:
@ «(h) = (="

b) kh) =1+ cos<ﬂ> + cos (ﬂ—h>
2 4
1, ifh =0,

© kth)y=304, ifh==1,
0, otherwise.

Suppose that {X;,t = 0, £1, ...} isstationary and that |9| < 1. Show that for
each fixed n the sequence

Su=Y 0X,_
j=1

is convergent absolutely and in mean square (see Appendix C) asm — oo.
Verify equations (2.2.6).
Show, using the geometric series1/(1—x) = Zj‘;oxf for |x| < 1,that1/(1—
¢z) = _Z;’ilqrfz*f for |¢| > 1and |z| > 1.
Show that the autoregressive equations

X, =p1 X1+ 74, tr=0,+1,...,

where {Z,} ~ WN(0,0?) and |¢| = 1, have no stationary solution. HINT:
Suppose there does exist a stationary solution {X,} and use the autoregressive
equation to derive an expression for the variance of X, — ¢;* X, ,_1 that con-
tradicts the stationarity assumption.

Let {Y;} bethe AR(1) plus noise time series defined by
=X, +W,

where {W,} ~ WN(0, 02), {X,} isthe AR(1) process of Example2.2.1, i.e,,
X, —¢X,_1=Z,,{Z} ~WN (0,07),

and E(W,Z,) =O0fordl s and:.

a. Show that {Y,} is stationary and find its autocovariance function.

b. Show that the time series U, = Y, — ¢Y,_; is 1-correlated and hence, by
Proposition 2.1.1, isan MA(1) process.

¢. Conclude from (b) that {Y;} isan ARMA(1,1) process and express the three
parameters of this model in terms of ¢, 02, and o2.

w!
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2.10. Use the program ITSM to compute the coefficients¢; and zr;, j = 1,...,5,in
the expansions

oo
X = Z ViZi-j
=0

and

oo
Zt = ZJTJX[,]
j=0

for the ARMA(1,1) process defined by the equations
X, —05X,.1=2,4+05Z,_;, {Z}~WN(0,067).

(SelectFile>Project>New>Univariate, thenModel>Specify. Intheresult-
ing dialog box enter 1 for the AR and MA orders, specify ¢ (1) = 6(1) = 0.5,
and click 0K. Finally, select Mode1>AR/MA Infinity>Default lag and the
values of ; and 7r; will appear on the screen.) Check the results with those
obtained in Section 2.3.

2.11. Suppose that in a sample of size 100 from an AR(1) process with mean .,
¢ = .6, and 02 = 2 we obtain X1 = .271. Construct an approximate 95%
confidence interval for . Are the data compatible with the hypothesis that
w=0?

2.12. Suppose that in a sample of size 100 from an MA(1) process with mean w,
6 = —.6, and 02 = 1 we obtain x;9p = .157. Construct an approximate 95%
confidence interval for . Are the data compatible with the hypothesis that
uw=07?

2.13. Suppose that in a sample of size 100, we obtain p(1) = .438 and p(2) = .145.

a. Assuming that the data were generated from an AR(1) model, construct
approximate 95% confidence intervals for both p(1) and p(2). Based on
these two confidence intervals, are the data consistent with an AR(1) model
with ¢ = .8?

b. Assuming that the data were generated from an MA(1) model, construct
approximate 95% confidence intervals for both p(1) and p(2). Based on
these two confidence intervals, are the data consistent with an MA(1) model
with 9 = .6?

2.14. Let {X,} be the process defined in Problem 2.2.

a. Find P, X, and its mean squared error.

b. Find P,X3 and its mean squared error.

c. Find Pan+1 and its mean squared error.
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2.15.

2.16.

2.17.

2.18.

Supposethat {X,,t = 0, 1, ...} isastationary process sati sfying the equations
X; = ¢1Xr—1 +---+ (PpXI—p + Z;,

where {Z,} ~ WN(0, 62) and Z, is uncorrelated with X, for each s < ¢. Show
that thebest linear predictor P, X, 1 of X, intermsof 1, X4, ..., X,,,assuming
n>p,is

Pan-H = ¢1Xn + 4+ ¢pXﬂ+l—p-
What is the mean squared error of P, X, 1?

Use the program ITSM to plot the sample ACF and PACF up to lag 40 of the
sunspot series D,,t+ = 1, 100, contained in the ITSM file SUNSPOTS.TSM.
(Open the project SUNSPOTS. TSM and click on the second yellow button at
the top of the screen to see the graphs. Repeated clicking on this button will
toggle between graphs of the sample ACF, sample PACF, and both. To see the
numerical values, right-click on the graph and select Info.) Fit an AR(2) model
to the mean-corrected data by selecting Model>Estimation>Preliminary
and click Yes to subtract the sample mean from the data. In the dialog box that
follows, enter 2 for the AR order and make sure that the MA order is zero and
that the Yule-Walker algorithmis selected without AICC minimization. Click
0K and you will obtain amodel of the form

X, =1 X1+ X, 2+ Z,, where {Z:;} ~WN (O, 0'2) s

for the mean-corrected series X, = D, — 46.93. Record the values of the es-
timated parameters ¢., ¢,, and o2. Compare the model and sample ACF and
PACF by selecting the third yellow button at the top of the screen. Print the
graphs by right-clicking and selecting Print.

Without exiting from ITSM, use the model found in the preceding problem to
compute forecasts of the next ten values of the sunspot series. (Select Fore-
casting>ARMA, make sure that the number of forecastsis set to 10 and the box
Add the mean to the forecasts is checked, and then click 0K. You will
see agraph of the original data with the ten forecasts appended. Right-click on
the graph and then on Info to get the numerical values of the forecasts. Print
the graph as described in Problem 2.16.) The details of the calculations will be
taken up in Chapter 3 when we discuss ARMA modelsin detail.

Let {X,} be the stationary process defined by the equations

X, =Z,—0Z_1, t=0%1, ...,
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where 6] < 1 and {Z,} ~ WN(0,0?). Show that the best linear predictor
P,X,+10f X, 1 basedon {X;, —oo < j <n}is

oo

ﬁanJrl = - ZQjX,hLl,j,
=1

What is the mean squared error of the predictor P, X,,.1?
2.19. If {X,} is defined asin Problem 2.18 and 6 = 1, find the best linear predictor

P, X, 10f X, intermsof X4, ..., X,. Whatisthe corresponding mean squared
error?

2.20. Inthe innovations algorithm, show that for each n > 2, theinnovation X, — X,
isuncorrelated with X4, ..., X,,_1. Concludethat X, — X, isuncorrelated with
theinnovations X1 — X1, ..., X1 — Xp_1.

2.21. Let X4, X5, X4, X5 be observations from the MA(1) model
X, =Z +0Z_1, {Z}~WN(0,0?).
a. Find the best linear estimate of the missing value Xz interms of X; and X5.

b. Find the best linear estimate of the missing value Xz interms of X, and Xs.

c¢. Find the best linear estimate of the missing value X3 intermsof X1, X5, X4,
and Xs.

d. Compute the mean squared errors for each of the estimatesin (a), (b), and
(©).
2.22. Repeat parts (8)—(d) of Problem 2.21 assuming now that the observations X,
X5, X4, X5 are from the causal AR(1) model

X, =¢X, 1+ Z, {Z}~WN(0,0%).
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3.1 ARMA(p, q) Processes
3.2 The ACF and PACF of an ARMA(p, q) Process
3.3 Forecasting ARMA Processes

In this chapter weintroduce an important parametric family of stationary time series,
the autoregressive moving-average, or ARMA, processes. For alarge class of autoco-
variancefunctionsy (-) itispossibleto findan ARMA process {X,} with ACVF yx ()
such that y (-) is well approximated by yx (-). In particular, for any positive integer
K, there existsan ARMA process {X,} suchthat yx(h) = y(h) forh =0,1,..., K.
For this (and other) reasons, the family of ARMA processes plays a key rolein the
modeling of time series data. The linear structure of ARMA processes also leads
to a substantial simplification of the general methods for linear prediction discussed
earlier in Section 2.5.

3.1 ARMA(p. q) Processes

Definition 3.1.1

In Section 2.3 we introduced an ARMA(1,1) process and discussed some of its key
properties. These included existence and uniqueness of stationary solutions of the
defining equations and the concepts of causality and invertibility. In this section we
extend these notions to the general ARMA (p, g) process.

{X,}isan ARMA(p, q) processif {X,} is stationary and if for every ¢,
Xi—p1Xo 1 — =9 Xs_ =2, +01Z; 1+ -+ 0,Z,_, (3.11)

where {Z,} ~ WN(0, 0'2) and the polynomials (1 — ¢1z — ... — ¢,z”) and (1 +
61z + ...+ 6,z7) have no common factors.
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The process {X,} issaid to bean ARMA(p, ¢) processwith mean p if {X, — u}
isan ARMA(p, q) process.
It is convenient to use the more concise form of (3.1.1)

$(B)X, =0(B)Z,, (3.1.2)
where ¢ (-) and 6(-) are the pth and gth-degree polynomials

¢ =1—¢giz—---—Pp2”

and
0(z) =1+ 61z + -+ 6,7,

and B is the backward shift operator (B’X, = X,_;, B/'Z, = Z,_;, j =0,£1,...).
Thetime series {X,} is said to be an autoregressive process of order p (or AR(p))
if 8(z) = 1, and amoving-average process of order g (or MA(g)) if ¢ (z) = 1.

An important part of Definition 3.1.1 is the requirement that {X,} be stationary.
In Section 2.3 we showed, for the ARMA(1,1) equations (2.3.1), that a stationary
solution exists (and is unique) if and only if ¢; # +1. The latter is equivalent to the
condition that the autoregressive polynomial ¢(z) = 1 — ¢1z # Ofor z = £1. The
anaogous condition for the general ARMA(p, g) processis¢(z) = 1— ¢z — -+ —
¢,z" # 0for all complex z with |z| = 1. (Complex z is used here, since the zeros of
apolynomial of degree p > 1 may be either real or complex. The region defined by
the set of complex z suchthat |z| = lisreferred to asthe unit circle) If ¢ (z) # Ofor
all z on the unit circle, then there exists § > 0 such that

1

e Z x;jz forl—8 <|z] <1+38,

j=o00

and Zj‘;m |x;] < co. Wecanthen define 1/¢ (B) asthelinear filter with absolutely
summabl e coefficients

L: i X'Bj-
oB) =

Applying the operator x (B) := 1/¢(B) to both sides of (3.1.2), we obtain

X, = x(B)¢p(B)X, = x(B)Y(B)Z, = ¥ (B)Z, = Z ViZi-j, (313

j=—o00

where ¥ (z) = x(2)0(z) = Y7~ _,, ¥;z’. Using the argument given in Section 2.3
for the ARMA(1,1) process, it followsthat v (B)Z, isthe unique stationary solution
of (3.1.1).
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Existence and Uniqueness:

A stationary solution {X,} of equations (3.1.1) exists (and is aso the unique sta-
tionary solution) if and only if

$p()=1—¢rz—---—¢,z" #0 foral|z| =1 (3.1.4)

In Section 2.3 we saw that the ARMA(1,1) processis causd, i.e., that X, can be
expressed interms of Z,, s < ¢, if and only if |¢1] < 1. For ageneral ARMA(p, q)
process the analogous condition is that ¢ (z) # 0 for |z| < 1, i.e., the zeros of the
autoregressive polynomia must all be greater than 1 in absolute value.

Causality:

An ARMA(p, q) process {X,} is causal, or a causal function of {Z,}, if there
exist constants {y;} such that 7 [¢/;| < oo and

X, =) v¥;Z_;forals (3.1.5)
j=0

Causality is equivalent to the condition
() =1—¢piz—---—¢,z2" #0forall |z] < 1. (3.1.6)

The proof of the equivalence between causality and (3.1.6) follows from ele-
mentary properties of power series. From (3.1.3) we see that {X,} is causal if and
only if x(z) :=1/¢(z) = Zj‘;o X,z (assuming that ¢ (z) and 6(z) have no common
factors). But this, in turn, is equivalent to (3.1.6).

The sequence {/;} in (3.1.5) isdetermined by therelation v (z) = Z?io vzl =
0(z)/¢(z), or equivalently by the identity

(I—rz—-—p2") o+ Vaz+--) =1+ 61z+ -+ 6,27
Equating coefficientsof z/, j =0, 1, ..., wefind that

1= 1o,

O = Y1 — Yooh1,

02 = Yro — Y11 — Yodh2,

or equivalently,

P
V=D el =6; j=01..., (317)
k=1
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where 6, :=1,6; :==0for j > g,and y; :=0for j <O.
Invertibility, which allows Z, to be expressed interms of X, s < ¢, hasasimilar
characterization in terms of the moving-average polynomial.

I nvertibility:
An ARMA(p, q) process {X,} isinvertibleif there exist constants {;} such that
> 2o lmjl < oo and

o0
Z, = anxt,j for all ¢.
=0

Invertibility is equivalent to the condition

0(z) =1+ 612+ -+ 6,27 #0foral |z] < 1.

Interchanging theroles of the AR and MA polynomials, wefind from (3.1.7) that
the sequence {rr;} is determined by the equations

q
T+ Omi=—¢;, j=01..., (3.1.8)
k=1

where ¢ := —1, ¢; :=0for j > p,andz; ;== 0for j <O.

An ARMAC(1,1) process
Consider the ARMA(1,1) process {X,} satisfying the equations
X, —5X,_1=Z+.4Z,_1, {Z}~WN(0,0%). (3.1.9)

Since the autoregressive polynomia ¢(z) = 1 — .5z hasazero a z = 2, which is
located outside the unit circle, we conclude from (3.1.4) and (3.1.6) that there exists
aunique ARMA process satisfying (3.1.9) that is also causal. The coefficients {y;}
in the MA (c0) representation of {X,} are found directly from (3.1.7):

Yo=1,
1= .4+ 5,
Yo, = .5(.4+.5),

v, =5"14+.5), j=12....

The MA polynomia 6(z) = 1+ .4z hasazeroat z = —1/.4 = —2.5, whichisalso
located outside the unit circle. Thisimplies that {X,} is invertible with coefficients
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{m;} given by (see (3.1.8))

7o =1,

7 =—(4+.5),

7w, = —(4+ .5)(-.4),

;i =—(4+ .54 j=12...
(A direct derivation of these formulas for {v;} and {x;} was given in Section 2.3
without appealing to the recursions (3.1.7) and (3.1.8).) O
An AR(2) process
Let {X,} bethe AR(2) process

X, =7X,.1—1X, 2+ Z, {Z}~WN(0,0?).

The autoregressive polynomial for this processhasthefactorization ¢ (z) = 1— .7z +
172 = (1 — .52)(1 — .27), and is therefore zero at z = 2 and z = 5. Since these
zeroslie outside the unit circle, we conclude that {X,} isacausal AR(2) processwith
coefficients {y;} given by

Yo =1,
Y =7,
Vo= .77 — 1,

l[fj :.71//1',1—.11//1',2, ] :2, 3,

While it is a simple matter to calculate v, numerically for any j, it is possible also
to give an explicit solution of these difference equations using the theory of linear
difference equations (see TSTM, Section 3.6). O

The option Mode1>Specify of the program ITSM allowsthe entry of any causal
ARMA(p, g) mode with p < 28 and ¢ < 28. Thisoption contains a causality check
andwill immediately et you know if the entered model isnoncausal. (A causal model
can be obtained by setting all the AR coefficientsequal to .001.) Once acausa model
has been entered, the coefficients ¢ ; in the MA (oco) representation of the process can
be computed by selecting Mode1>AR/MA Infinity. This option will also compute
the AR(oo) coefficients 7, provided that the model isinvertible.

An ARMA(2,1) process
Consider the ARMA(2,1) process defined by the equations

X, — .75X,_1 + .5625X,_, = Z, + 1.25Z,_1, {Z} ~WN(0,0?).
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The AR polynomial ¢(z) = 1 — .75z + .5625;2 has zeros at z = 2(1 £ iv/3)/3,
which lie outside the unit circle. The processis therefore causal. On the other hand,
the MA polynomia 6(z) = 1+ 1.25z hasa zero at z = —.8, and hence {X,} is hot
invertible. O

Remark 1. It should be noted that causality and invertibility are properties not of
{X,} done, but rather of the relationship between the two processes {X,} and {Z;}
appearing in the defining ARMA equations (3.1.1). O

Remark 2. If {X,} is an ARMA process defined by ¢(B)X, = 0(B)Z,, where
0(z) # 0if |z] = 1, thenitisaways possible (see TSTM, p. 127) to find polynomials
#(z) and &(z) and awhite noise sequence {W,} such that ¢ (B) X, = 6(B)W, and 6 (z)
and ¢(z) are nonzero for |z| < 1. However, if the original white noise sequence {Z,}
isiid, then the new white noise sequencewill not beiidunless{Z,} isGaussian. O

Inview of the preceding remark, wewill focus our attention principally on causal
and invertible ARMA processes.

3.2 The ACF and PACF of an ARMA(p. q) Process

In this section we discuss three methods for computing the autocovariance function
y (-) of acausal ARMA process {X,}. The autocorrelation function is readily found
from the ACVF on dividing by y (0). The partial autocorrelation function (PACF) is
also found from the function y (-).

3.2.1 Calculation of the ACVF
First we determine the ACVF y (-) of the causal ARMA(p, ¢) process defined by

¢(B)X, =0(B)Z,, {Z,}~WN (Ov 02) ) (3.2.1)
where¢(z) =1— ¢z —--- — ¢,z and 0(z) = 1+ 61z + - - - + 6,z7. The causality
assumption implies that

X = ¥,Z,, (3.2.2)
j=0

where Zj‘;o vzl = 0(2)/¢(2), Iz| < 1. Thecalculation of the sequence {vy/;} was
discussed in Section 3.1.
First Method. From Proposition 2.2.1 and the representation (3.2.2), we obtain

y(h) = E(X, 14 X,) = 0% Y Y. (3.2.3)
j=0
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Example 3.2.1  The ARMA(1,1) process
Substituting from (2.3.3) into (3.2.3), we find that the ACVF of the process defined
by
X, —¢X;.1=Z,+0Z_1, {Z,}~WN(0,5?%, (3.2.9)
with |¢] < Llisgiven by

o0

y(©) =0") y?

j=0

=02 [1+ © +¢)ZZ¢2J}

j=0

2
)

1—¢?

y(1) = o? Z Vi,

=0

= o2 [9 +o+ 6 +¢>)2¢Z¢21}
j=0

o, 6 + ¢)%
=0 |:9+¢+—1_¢2 :|,
and
y(h) =¢" vy, h=>2 O

Example 3.2.2  The MA(q) process

For the process
X, =Z+60.Z 1+ +6,Z_y {Z})~WN(0,07,
eguation (3.2.3) immediately gives the result
sl _
V() = o jz:; 00+, 1f1h] <gq,
0, if |n] > q,

where 6, is defined to be 1. The ACVF of the MA(g) process thus has the distinctive
feature of vanishing at lags greater than ¢g. Data for which the sample ACVF is
small for lags greater than ¢ therefore suggest that an appropriate model might be a
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moving average of order ¢ (or less). Recall from Proposition 2.1.1 that every zero-
mean stationary process with correlations vanishing at lags greater than ¢ can be
represented as a moving-average process of order g or less. O

Second Method. 1If we multiply each side of the equations
X — ¢1X171 - ¢pXt7p =Z+01Zi_1+---+ eqztfzp

by X,_«,k=0,1,2,..., and take expectations on each side, we find that

o]

y(k) —dryk—1) — - —¢,yk—p) =0°Y O;¥;. 0<k<m, (325)

Jj=0

and

y&) —pryk —1) — - —yk—p) =0, k=m, (3.2.6)

wherem = max(p, ¢+1), ¢, := 0for j < 0,6, := 1,andd; := 0forj ¢ {0, ..., q}.
In calcul ating theright-hand side of (3.2.5) we have made use of theexpansion (3.2.2).
Equations (3.2.6) are aset of homogeneous linear difference equations with constant
coefficients, for which the solution is well known (see, e.g., TSTM, Section 3.6) to
be of the form

y(h) = ;" + ;" -+, h=m—p, (327)
whereé&, ..., &, aretheroots (assumed to be distinct) of the equation ¢ (z) = 0, and
a1, ..., a, arearbitrary constants. (For further details, and for thetreatment of the case

wheretherootsarenot distinct, see TSTM, Section 3.6.) Of course, we arelooking for
the solution of (3.2.6) that also satisfies (3.2.5). We therefore substitute the solution
(3.2.7) into (3.2.5) to obtain a set of m linear equations that then uniquely determine
the constants oy, . . ., «, and them — p autocovariances y (h),0 < h < m — p.

The ARMAC(1,1) process
For the causal ARMA(1,1) process defined in Example 3.2.1, equations (3.2.5) are

y(0) — ¢y (D) =o*(L+0(0 + ¢)) (3.2.8)
and

y (D) — ¢y (0) =0%6. (3.2.9)
Equation (3.2.6) takes the form

yk) —py(k —1) =0, k> 2. (3.2.10)

The solution of (3.2.10) is
y(h) =a¢", h=1
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Example 3.2.4

Example 3.2.5

Substituting this expression for y (k) into the two preceding equations (3.2.8) and
(3.2.9) givestwo linear equationsfor « and the unknown autocovariance y (0). These
equations are easily solved, giving the autocovariances aready found for this process
in Example 3.2.1. O
The general AR(2) process

For the causal AR(2) process defined by

(1-&'B)(1-&'B)X, =Z,, &l &l > L& #&,
we easily find from (3.2.7) and (3.2.5) using the relations

=8 "+&"
and
b2= k76"
that
_ o2£282 s iih e i
e P Y [EF-D7 ™" - -D7g "], (321

Figures 3.1-3.4 illustrate some of the possible formsof y (-) for different values of &;
and &,. Notice that in the case of complex conjugate roots &, = re’’ and & = re=?,
0 < 6 < 7, we can write (3.2.11) in the more illuminating form

a?r* . r="sin(h6 + )

h) = —, 3.2.12
v 2 —=1)(* — 2r2cos20 + 1) sin6 ( )
where
2
1
tany = "~ tano (3.2.13)
rz—1

and cosy hasthe same sign ascosé. Thusinthiscase y (-) hasthe form of adamped
sinusoidal function with damping factor »—* and period 2/6. If the roots are close
to the unit circle, then r is close to 1, the damping is slow, and we obtain a nearly
sinusoidal autocovariance function. O

Third Method. The autocovariances can also be found by solving the first p + 1
equations of (3.2.5) and (3.2.6) for ¥ (0)..., y(p) and then using the subsequent
equations to solve successively for y(p + 1), y(p + 2), .... Thisis an especially
convenient method for numerical determination of the autocovariances y (k) and is
used in the option Mode1>ACF/PACF>Model of the program ITSM.

Consider again the causal ARMA(1,1) process of Example 3.2.1. To apply the third
method we simply solve (3.2.8) and (3.2.9) for v (0) and y (1). Then y (2), ¥ (3), ...
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Figure 3-1

The model ACF of the AR(2)
series of Example 3.2.4
with & = 2 and & = 5.

Figure 3-2

The model ACF of the AR(2)
series of Example 3.2.4
with & = 10/9 and &, = 2.
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Figure 3-3
The model ACF of
the AR(2) series of
Example 3.2.4 with
£ =—10/9 and & = 2.
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Figure 3-4

The model ACF of the AR(2)
series of Example 3.2.4
with & = 2(1 + iv/3)/3
and & = 2(1 — i+/3)/3.

1.0

0.5

0.0

-0.5

1.0

0.5

0.0

-0.5

10
Lag

15

20

10
Lag

15

20



94

Chapter 3

ARMA Models

can be found successively from (3.2.10). It is easy to check that this procedure gives
the same results as those obtained in Examples 3.2.1 and 3.2.3. O

3.2.2 The Autocorrelation Function

Recall that the ACF of an ARMA process {X,} isthefunction p(-) found immediately
fromthe ACVF y(.) as
_r

y (0

Likewise, for any set of observations {x, ..., x,}, the sample ACF p(-) is computed
as

p(h)

v
7©)

The Sample ACF of an MA(q) Series. Given observations {x, ..., x,} of atime
series, one approach to thefitting of amodel to the datais to match the sample ACF
of the data with the ACF of the model. In particular, if the sample ACF o(h) issig-
nificantly different from zero for 0 < 7 < ¢ and negligible for 2 > ¢, Example
3.2.2 suggests that an MA(g) model might provide agood representation of the data.
In order to apply this criterion we need to take into account the random variation
expected in the sample autocorrelation function before we can classify ACF values
as“negligible.” To resolve this problem we can use Bartlett’s formula (Section 2.4),
which implies that for alarge sample of size n from an MA(g) process, the sample
ACF vaues at lags greater than g are approximately normally distributed with means
Oandvarianceswy,,/n = (14+2p%(1)+- - -+2p3(q))/n. Thismeansthat if the sample
isfrom an MA(g) process and if 1 > ¢, then p(h) should fall between the bounds
+1.96.,/wy,;, /n with probability approximately 0.95. In practice we frequently usethe
more stringent values +1.96/.,/n as the bounds between which sample autocovari-
ances are considered “negligible” A more effective and systematic approach to the
problem of model selection, which also appliesto ARMA(p, g) modelswith p > 0
and g > O, will be discussed in Section 5.5.

p(h)

3.2.3 The Partial Autocorrelation Function

The partial autocorrelation function (PACF) of an ARMA process {X,} is the
function «(-) defined by the equations

a0 =1
and

a(h) =¢p, h=1,
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where ¢,,, isthe last component of

én =T} s (3.2.14)
Ty =[yi— NIl epand v =y, yQ2),....y()].
For any set of observations{xy, ..., x,} withx; # x, for somei and j, thesample

PACF a(h) isgiven by
&(0) =1
and
&(h) =G, h =1,
where ¢y, isthe last component of
bn =T 4 (3.2.15)

We show in the next example that the PACF of acausal AR(p) processiszerofor
lags greater than p. Both sample and model partial autocorrelation functions can be
computed numerically using the program ITSM. Algebraic calculation of the PACF
is quite complicated except when ¢ is zero or p and g are both small.

It can be shown (TSTM, p. 171) that ¢,,;, isthe correlation between the prediction
errors X, — P(X,| X1, ..., X)) and Xg — P(Xo| X1, ..., Xs_1).

The PACF of an AR(p) process
For the causal AR(p) process defined by

Xz_¢1thl_"'_¢pXt7p = Z;, {Zt}NWN (0702),

we know (Problem 2.15) that for 2 > p the best linear predictor of X, in terms of
1 Xq,....X,, is

Xpp1 = ¢1Xp + 2 X1+ + GpXni1—p-

Since the coefficient ¢, of X1 is¢, if h = pand 0if h > p, we conclude that the
PACF «(-) of the process { X;} hasthe properties

a(p) :¢p
and
a(h) =0forh > p.

For h < p the values of « (k) can easily be computed from (3.2.14). For any
specified ARMA model the PACF can be evaluated numerically using the option
Model>ACF/PACF>Model of the program ITSM. O
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Example 3.2.8

The PACF of an MA(1) process

For the MA(1) process, it can be shown from (3.2.14) (see Problem 3.12) that the
PACFatlag his

a(h) =gm =—(=0)"/ (1+6°+---+6%). O

The Sample PACF of an AR(p) Series. If {X,} isan AR(p) series, then the sample
PACF based on observations {x1, . . ., x,,} should reflect (with sampling variation) the
properties of the PACF itself. In particular, if the sample PACF &a(h) is significantly
different from zero for 0 < h < p and negligiblefor # > p, Example 3.2.6 suggests
that an AR(p) model might provide agood representation of the data. To decide what
ismeant by “negligible” we can use the result that for an AR(p) process the sample
PACF valuesat lags greater than p are approximately independent N (0, 1/r) random
variables. This means that roughly 95% of the sample PACF values beyond lag p
should fall within the bounds +1.96/.,/n. If we observe a sample PACF satisfying
la(h)| > 1.96//nfor0 < h < p and |@(h)| < 1.96/./n for h > p, this suggests an
AR(p) modd for the data. For a more systematic approach to model selection, see
Section 5.5.

3.2.4 [Examples

Thetime seriesplotted in Figure 3.5 consists of 57 consecutive daily overshortsfrom
an underground gasoline tank at afilling station in Colorado. If y, is the measured
amount of fuel in the tank at the end of the ¢th day and «, is the measured amount
sold minus the amount delivered during the course of the rth day, then the overshort
at the end of day ¢ is defined as x, = y, — y,_1 + a,. Due to the error in measuring
the current amount of fuel in the tank, the amount sold, and the amount delivered
to the station, we view y,, a;, and x, as observed values from some set of random
variables Y,, A,,and X, forr = 1, ..., 57. (In the absence of any measurement error
and any leak in the tank, each x; would be zero.) The data and their ACF are plotted
in Figures 3.5 and 3.6. To check the plausibility of an MA(1) model, the bounds
+1.96(1 4 2p2(1))”?/n¥/2 are also plotted in Figure 3.6. Since 5 (k) is well within
these bounds for 2 > 1, the data appear to be compatible with the model

X, =u+2Z,+60Z_1, {Z}~WN(0,0?). (3.2.16)

Themean . may be estimated by the sample mean xs; = —4.035, and the parameters
6, 0% may be estimated by equating the sample ACVF with the model ACVF at lags
0 and 1, and solving the resulting equations for # and 2. This estimation procedure
is known as the method of moments, and in this case gives the equations

(1+6%02 = 7(0) = 3415.72,
002 = (1) = —1719.95.
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Example 3.2.8.

Figure 3-6

The sample ACF of
the data in Figure 3.5
showing the bounds
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assuming an MA(1)
model for the data.

Using the approximate solution # = —1 and o2 = 1708, we obtain the noninvertible
MA(1) model

ACF

X, =—-4.085+ 27, — Z1, {Z}~WN(Q, 1708).

Typically, intimeseriesmodeling wehavelittleor no knowledgeof theunderlying
physical mechanism generating the data, and the choice of a suitable class of models
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is entirely data driven. For the time series of overshorts, the data, through the graph
of the ACF, lead usto the MA(1) model. Alternatively, we can attempt to model the
mechanism generating the time series of overshorts using a structural model. Aswe
will see, the structural model formulation leads us again to the MA(1) model. In the
structural model setup, write Y;, the observed amount of fuel in thetank at timer, as

Y, =y '+ U, (3.2.17)

where y;" isthetrue (or actual) amount of fuel inthetank at time¢ (not to be confused
with y, above) and U, isthe resulting measurement error. The variable y* is an ide-
alized quantity that in principle cannot be observed even with the most sophisticated
measurement devices. Similarly, we assume that

A=a’+V, (3.2.18)

where ¢ isthe actual amount of fuel sold minus the actual amount delivered during
day ¢, and V;, is the associated measurement error. We further assume that {U,} ~
WN(0, 63), {V,} ~ WN(O, 02), and that the two sequences {U,} and {V,} are uncor-
related with one another (E(U,V,) = Ofor al s and ¢). If the change of level per day
duetoleakageis u gallons (1 < O indicates leakage), then

yi=n+y,—a (3.2.19)

This equation relates the actual amounts of fuel in the tank at the end of days r and
t — 1, adjusted for the actual amounts that have been sold and delivered during the
day. Using (3.2.17)—(3.2.19), the model for the time series of overshortsis given by

Xe=Y,—Ya+A=p+U -U-1+V.
This model is stationary and 1-correlated, since
EX,=E(un+U -U_1+V)=u
and
y(h) = E[(Xssn — (X, — w)]
= E[(Usn — U1+ Vi) (U, — U1 + V)]
202+ 02, ifh=0,
=1 —a2, if |h| =1,
0, otherwise.

It follows from Proposition 2.1.1 that {X,} isthe MA(1) model (3.2.16) with

2
91 —0y

1467 - 205 +of’
From this equation we see that the measurement error associated with the adjustment
{A,} is zero (i.e, o2 = 0) if and only if p(1) = —.5 or, equivalently, if and only
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Example 3.2.9

Figure 3-7

The sample PACF of the
sunspot numbers with the
bounds £1.96/+/100.

if 6, = —1. From the analysis above, the moment estimator of 9, for the overshort
dataisinfact —1, so that we conclude that thereisrelatively little measurement error
associated with the amount of fuel sold and delivered.

We shall return to a more genera discussion of structural models in Chap-
ter 8. O

The sunspot numbers

Figure 3.7 showsthe sample PACF of the sunspot numbers Sy, . . ., Si (for theyears
1770 — 1869) as obtained from ITSM by opening the project SUNSPOTS.TSM and
clicking on the second yellow button at the top of the screen. The graph also showsthe
bounds +1.96/+/100. Thefact that all of the PACF valuesbeyond lag 2 fall withinthe
bounds suggests the possible suitability of an AR(2) model for the mean-corrected
dataset X, = S, — 46.93. One sSimple way to estimate the parameters ¢, ¢,, and o2
of such amodel isto require that the ACVF of the model at lags 0, 1, and 2 should
match the sample ACVF at those lags. Substituting the sasmple ACVF values

7(0) = 13822, $(1) = 11144, $(2) = 591.73,

for y (0), v (1), and y (2) inthefirst three equations of (3.2.5) and (3.2.6) and solving
for ¢1, ¢, and o2 gives the fitted model

X, —1.318X, 1 +0634X, , =Z,, {Z}~ WN(0,289.2). (3.2.20)
(Thismethod of model fitting is called Yule-Walker estimation and will be discussed
more fully in Section 5.1.1.) O
o 1T . L,

& o | | | | | | ; | | ; | — | . 1
o | | ‘ [ TTT T T T T

| | | | |

0 10 20 30 40
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3.3 Forecasting ARMA Processes

The innovations agorithm (see Section 2.5.2) provided us with a recursive method
for forecasting second-order zero-mean processes that are not necessarily stationary.
For the causal ARMA process

$(BX, = 0(BYZ,, {Z,) ~WN(0,0?),

it is possible to simplify the application of the algorithm drastically. The idea is to
apply it not tothe process{ X, } itself, but to thetransformed process(cf. Ansley, 1979)

W, = o 1X,, t=1....,m,
(3.3.1)
W, = 0_1¢(B)X,, t>m,
where
m = max(p, q). (3.3.2

For notational convenience we define 6, := 1 and 6; := 0 for j > ¢. We shall also
assumethat p > 1and ¢ > 1. (Thereis no loss of generality in these assumptions,
since in the analysis that follows we may take any of the coefficients ¢; and 6; to be
zero.)

The autocovariance function yx (-) of {X;} can easily be computed using any of
the methods described in Section 3.2.1. The autocovariances « (i, j) = E(W;W;),
i, j > 1, arethen found from

o 2yx(i — j), 1<i, j<m

P
o7 [mi D= o — i - j|)} . minG, j) <m < max(, j) < 2m,
r=1

k(i, j) = (3.3.3)
q
Y 06y, minG, j) > m,
r=0
0, otherwise.
Applying the innovations algorithm to the process {W,} we obtain
Wn-‘rl = Zen‘j(wn-ﬁ-l—j - Wn+l—j)a l<n<m,
=1
! (3.3.4)

q
Wn+1 = E an(Wn-ﬁ-l—j - Wn+1—j)a n=m,
j=1

R 2
where the coefficients 6,; and the mean squared errorsr, = E (WnH — W,Hl) are

found recursively from the innovations algorithm with « defined asin (3.3.3). The
notable feature of the predictors (3.3.4) is the vanishing of 6,; when bothn > m and
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J > g. Thisisaconsequence of theinnovationsalgorithm and thefact that « (r, s) = 0
if r >mand|r —s|>q.

Observe now that equations (3.3.1) allow each X,,, n > 1, to bewritten asalinear
combination of W;, 1 < j < n, and, conversely, esch W,, n > 1, to be written asa
linear combination of X;, 1 < j < n. Thismeansthat the best linear predictor of any
randomvariableY intermsof {1, X4, ..., X,} isthe same asthe best linear predictor
of Yintermsof {1, Wy, ..., W, }. Weshall denotethispredictor by P,Y. Inparticular,
the one-step predictors of W, ; and X,,,; are given by

WnJrl =P, Wn+l
and
)A(n+1 = P, X1
Using the linearity of P, and equations (3.3.1) we see that
szaflff,, t=1....,m,
R R (3.3.5)
Wo=o (X —gXa— =Xy |, 1o m,
which, together with (3.3.1), shows that
X,—X =0 [W, - W,] forals> 1. (3.3.6)
Replacing (W; — W;) by o 71(X; — X;) in (3.3.3) and then substituting into (3.3.4),
we finally obtain
Zénj <Xn+1_j —5(”4_1_j>, 1<n<m,
n =1
=1’ (3.3.7)

~

q
¢1Xn +---+ ¢17Xn+lfp + Zenj <Xn+lfj - Xn+lfj> , nz=m,
j=1

and

A

~ 2 2
E (Xn+1 — X,Hl) — 02F (W,,+1 _ W,,H) = o2, (3.3.8)

where 6,; and r, are found from the innovations qlgorjthm with « asin (3.3.3).
Equations (3.3.7) determine the one-step predictors X,, X3, ... recursively.

Remark 1. It can beshown (see TSTM, Problem 5.6) that if {X,} isinvertible, then
asn — oo,

R 2
E(Xn—X,, —Z,l) -0,

6,;—0;, j=1...,q,
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Example 3.3.2

Example 3.3.3

and
r, — 1.

Algebraic calculation of the coefficients6,; and r,, isnot feasible except for very sim-
ple models, such as those considered in the following examples. However, numerical
implementation of the recursions is quite straightforward and is used to compute
predictorsin the program ITSM. O

Prediction of an AR(p) process
Applying (3.3.7) to the ARMA(p, 1) process with ; = 0, we easily find that

5(”+1 = ¢1Xn +-F ¢an+1,p, nz=p. o

Prediction of an MA(q) process
Applying (3.3.7) tothe ARMA(L, ¢) process with ¢; = O gives

min(n,q)

Xvn-kl = Z an (Xn+l—j - j\(n-%l—j) s n = 1’
j=1

where the coefficients 6,; are found by applying the innovations algorithm to the co-
variancesk (i, j) definedin (3.3.3). Sincein this case the processes { X, } and {o ~*W,}
areidentical, these covariances are simply

g—li—Jl
ki, ) =0 yxi =) =Y 6. O
r=0

Prediction of an ARMA(1,1) process
If
X, —¢X,1=2Z,+0Z_1, {Z}~WN(0,0?)),
and |¢| < 1, then equations (3.3.7) reduce to the single equation
Xus1 = ¢Xu +6u(X, = X,), n=1

Tocomputed,, wefirst useExample3.2.1tofindthat yx (0) =02 (1 + 20¢ + 62) /(1—
$?). Substituting in (3.3.3) then gives, for i, j > 1,

(1+20¢+06%)/(1—¢%), i=j=1
o 1+ 62, i=j>2,
k(i,j) =
0, i—jl=1i>=1

0, otherwise,
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With these values of « (i, j), the recursions of the innovations algorithm reduce to
ro=(1+20¢ +6%) / (1—¢?),
Opr = 0/rn_1, (3.3.9
r,=1+6%— 02/r,,_1,

which can be solved quite explicitly (see Problem 3.13). O

Numerical prediction of an ARMA(2,3) process

In this example we illustrate the steps involved in numerical prediction of an
ARMA(2,3) process. Of course, these stepsare shown for illustration only. The calcu-
lationsareall carried out automatically by ITSM inthecourseof computing predictors
for any specified data set and ARMA model. The process we shall consider is the
ARMA process defined by the equations

X, — X1+ 0.24X,_» = Z, + 0.4Z,_1 + 0.2Z,_» + 0.1Z, 5, (3.3.10)

where{Z,} ~ WN(O, 1). Tenvaluesof X4, ..., X;o Smulated by the program ITSM
are shown in Table 3.1. (These were produced using the option Model>Specify to
specify the order and parameters of the model and then Model>Simulate to generate
the series from the specified model.)

Thefirst step isto compute the covariances yx (h), h = 0, 1, 2, which are easily
found from equations (3.2.5) withk = 0, 1, 2to be

yx(0) = 7.17133, yx(1) =6.44139, and yx(2) = 5.0603.
From (3.3.3) we find that the symmetric matrix K = [k (i, j)];, j=12.. iSgiven by

7.1713
6.4414 7.1713
5.0603 6.4414 7.1713
0.10 034 0816 121

K= 0 0.10 034 050 121
0 0 010 024 050 121
0 0 010 0.24 050 1.21

0 0 010 024 050 121

The next step is to solve the recursions of the innovations algorithm for 6,; and
r, using these values for « (i, j). Then

D60 (Xuas = Kaias). n=12
=1

Xn+l =

3
Xn - 0-24Xn71 + Zgnj (Xn+17j - )A(nJrlfj) , n= 31 47 e
j=1
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and
R 2
E <Xn+l - XrH—l) = Gzrn = Fy.
Theresults are shown in Table 3.1. O
h-Step Prediction of an ARMA(p, q) Process
Asin Section 2.5, we use P,Y to denote the best linear predictor of Y in terms of

X1, ..., X, (which, aspointed out after (3.3.4), isthe same asthe best linear predictor
of Yintermsof Wy, ..., W,). Then from (2.5.30) we have

nth—1 n+h—1
~ 2 ~
Pan+ll = E 9n+hfl,j (Wn+h7j - Wn+h7j) =0 E 9n+hfl,j <Xn+h7j - XnJrhfj) .
Jj=h j=h

Using this result and applying the operator P, to each side of equations (3.3.1), we
conclude that the i-step predictors P, X, satisfy

n+h—1
E 9n+hfl,j <Xn+h7j - XnJrhfj) s 1 = h <m-—n,
i=h

I)n X,l+h - (33 11)

)4 n+h—1
Z¢i Py Xnin—i + Z Onih-1,; (Xn+h—j - Xn+h—j) , h>m—n.
i—1 i=h

If, asisamost alwaysthe case, n > m = max(p, ¢), thenforal n > 1,
)4 q .
PanH-h = Z b Pan+h—i + Z 9n+h—l,j (Xn-‘rh—j - Xn+h—j> . (3312)
i=1 j=h

Oncethepredictors X, . .. X, havebeen computed from (3.3.7), itisastraightforward
calculation, with n fixed, to determine the predictors P, X, 11, P, X412, PaX,13, - ..

Table 3.1 5(n+1 for the ARMA(2,3) Process of Example 3.3 .4.

n Xn+1 I'n 9n1 9n2 9n3 Xn+1

0 1.704 7.1713 0

1 0.527 1.3856 0.8982 1.5305

2 1.041 1.0057 1.3685 0.7056 -0.1710

3 0.942 1.0019 0.4008 0.1806 0.0139 1.2428

4 0.555 1.0019 0.3998 0.2020 0.0732 0.7443

5 —1.002 1.0005 0.3992 0.1995 0.0994 0.3138

6 —0.585 1.0000 0.4000 0.1997 0.0998 —1.7293

7 0.010 1.0000 0.4000 0.2000 0.0998 —0.1688

8 —0.638 1.0000 0.4000 0.2000 0.0999 0.3193

9 0.525 1.0000 0.4000 0.2000 0.1000 —0.8731
10 1.0000 0.4000 0.2000 0.1000 1.0638

11 1.0000 0.4000 0.2000 0.1000
12 1.0000 0.4000 0.2000 0.1000
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Table 3.2

recursively from (3.3.12) (or (3.3.11) if n < m). The calculations are performed
automatically in the Forecasting>ARMA option of the program ITSM.

h-step prediction of an ARMA(2,3) process

To compute h-step predictors, » = 1,..., 10, for the data of Example 3.3.4 and
the model (3.3.10), open the project E334.TSM in ITSM and enter the model using
the option Model>Specify. Then select Forecasting>ARMA and specify 10 for the
number of forecasts required. You will notice that the white noise variance is au-
tomatically set by ITSM to an estimate based on the sample. To retain the model
value of 1, you must reset the white noise variance to this value. Then click 0K and
you will see a graph of the original series with the ten predicted values appended.
If you right-click on the graph and select Info, you will see the numerical results
shown in the following table as well as prediction bounds based on the assumption
that the seriesis Gaussian. (Prediction bounds are discussed in the last paragraph of
this chapter.) The mean squared errors are cal cul ated as described bel ow. Notice how
the predictors convergefairly rapidly to the mean of the process(i.e., zero) asthelead
time & increases. Correspondingly, the one-step mean squared error increases from
the white noise variance (i.e., 1) at » = 1 to the variance of X, (i.e., 7.1713), which
isvirtually reached at 1 = 10. O

The Mean Squared Error of P, X, .,
The mean squared error of P, X, ., iseasily computed by ITSM from the formula

. 2
h—1 J
Gf(h) = E(XnJrh - Pan+h)2 = Z (Z Xr9n+hrl,jr> Unth—j—1, (3313)
j=0 \r=0

h-step predictors for the ARMA(2,3)
Series of Example 3.3.4.

>

ProXio+h MSE

1.0638 1.0000
1.1217 1.7205
1.0062 2.1931
0.7370 2.4643
0.4955 2.5902
0.3186 2.6434
0.1997 2.6648
0.1232 2.6730
0.0753 2.6761
0.0457 2.6773

O O XONOUT A~ WK =

—_
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where the coefficients x; are computed recursively from the equations xo = 1 and

min(p, j)

Xj = Z Gixj—xs J=L12,.... (3.3.19)

k=1

h-step prediction of an ARMA(2,3) process

We now illustrate the use of (3.3.12) and (3.3.13) for the h-step predictors and their
mean squared errors by manually reproducing the output of ITSM shown in Table
3.2. From (3.3.12) and Table 3.1 we obtain

2 3
PpX1p = Z @i P1oX1o-; + Z 011, (X12—j - X12—_/)
L —~

i=1

= 1 X1 + ¢2X10+ 0.2 <X10 - )A(lo> +0.1 (Xg - 5(9>
=11217

and

2 3
P1oX13 = Z¢iP10X13—i + 2912,,' (X13—j — X13—j)
im1 =

= $1P1oX12 + $2X11 + 0.1 (Xlo - 5(10>
= 1.0062.
For k > 13, PipX, iseasily found recursively from
PioXy = ¢1P1oXi—1+ ¢2ProXy—2.

To find the mean sgquared errors we use (3.3.13) with xo = 1, x1 = ¢1 = 1, and
X2 = ¢1x1+ ¢» = 0.76. Using the values of 6,; and v; (= r;) in Table 3.1, we obtain

05(2) = E(X12 — P1oX12)? = 2.960
and
05(3) = E(X13 — PoX13)* = 4.810,
in accordance with the results shown in Table 3.2. 0O

Large-Sample Approximations
Assuming as usua that the ARMA(p, ¢q) process defined by ¢(B)X, = 6(B)Z;,
{Z,} ~WN (0, ), is causal and invertible, we have the representations

Xnn = Z I/ijnHz—j (3'3-15)
j=0
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and
n+h n+h + Z JT] n+h—js (3316)

where{y;} and {x;} areuniquely determined by equations(3.1.7) and (3.1.8), respec-
tively. Let P,Y denote the best (i.e., minimum mean squared error) approximation to
Y that is alinear combination or limit of linear combinations of X,, —oo < ¢t < n,
or equivalently (by (3.3.15) and (3.3.16)) of Z,, —oo < ¢ < n. The properties of the
operator P, were discussed in Section 2.5.3. Applying P, to each side of equations
(3.3.15) and (3.3.16) gives

P Xyn = Z Vi Zninj (3.3.17)
i=h
and
anIH-h = _ZﬂjanrH—h—j- (3318)

For h = 1 the jth term on the right of (3.3.18) is just X,.1—;. Once P,X,1 has
been evaluated, P, X, » can then be computed from (3.3.18). The predictors P, X, .3,
P, X,44, . .. can then be computed successively in the same way. Subtracting (3.3.17)
from (3.3.15) gives the h-step prediction error as

Xoin — PuXoin = Zlﬁjzwrh—j,
from which we see that the mean squared error is

62(h) = UZwa. (3.3.19)
The predictors obtained in this way have the form

P Xpin = icjxnj. (3.3.20)

In practice, of course, we have only observations X4, ..., X, available, so we must
truncate the series (3.3.20) after n terms. The resulting predictor is a useful approx-
imation to P, X, if n islarge and the coefficients c¢; converge to zero rapidly as j
increases. It can be shown that the mean squared error (3.3.19) of P, X, can aso
be obtained by letting n — oo in the expression (3.3.13) for the mean squared error
of P, X, sothat 52(h) isan easily calculated approximation to o.2(h) for largen.
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Prediction Bounds for Gaussian Processes
If the ARMA process {X,} is driven by Gaussian white noise (i.e, if {Z,} ~
11D N(O, 0?)), then for each i > 1 the prediction error X,,,, — P, X, is normally
distributed with mean 0 and variance o,2(h) given by (3.3.19).

Consequently, if ®;_,/, denotesthe (1—«/2) quantile of the standard normal dis-

tribution function, it followsthat X,,.., liesbetweenthebounds P, X, £ ®1_4,20, (h)
with probability (1—«). These boundsaretherefore called (1 — «) prediction bounds
for X,.

Problems

3.1. Determine which of the following ARMA processes are causal and which of
them areinvertible. (In each case {Z,} denotes white noise.)

a X, +0.2X,_; — 0.48X,_, = Z..

b. X, + 19X, 1+ 0.88X,_» = Z, + 0.2Z,_1 + 0.7Z,_,.
C. X, +06X,.1=2 +12Z,_,.

d. X, + 1.8X,_, + 0.81X,_, = Z..

e X, +1.6X,1 =2 —04Z,_,+0.04Z,_,.

3.2. For those processes in Problem 3.1 that are causal, compute and graph their
ACF and PACF using the program ITSM.

3.3. For those processes in Problem 3.1 that are causal, compute the first six co-
efficients v, ¥4, ..., ¥s in the causa representation X, = Zj‘;o V;Z,_; of
{X:}.

3.4. Compute the ACF and PACF of the AR(2) process
Xt :.8Xt_2+Zt, {Zt}NWN (O, 02).

3.5. Let {Y;} bethe ARMA plus noise time series defined by
Y, =X, + W,
where {W,} ~ WN (0, 62), {X,} isthe ARMA(p, q) process satisfying
¢(B)X, =0(B)Z,, {Z}~WN(0,0?),

and E(W,Z,) =0forall s and .

a. Show that {Y,} is stationary and find its autocovariance in terms of o2 and
the ACVF of {X,}.

b. Show that the process U, := ¢ (B)Y, is r-correlated, where r = max(p, q)
and hence, by Proposition 2.1.1, isan MA(r) process. Conclude that {Y,} is
an ARMA(p, r) process.
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3.6.

3.7.

3.8.

3.9.

Show that the two MA(1) processes

X, =Z +0Z_1, {(Z}~WN(0,0?

Y, =27+ %Z,,l, {Z,} ~WN (0, 5%?),
where 0 < |0| < 1, have the same autocovariance functions.
Suppose that {X,} isthe noninvertible MA (1) process

X, =Z +6Z_1, {Z}~WN(0,0?),

where |§| > 1. Define a new process {W,} as
Wi=D (=0)7X
j=0

and show that {W,} ~ WN (0, 03 ). Express o2 in terms of 6 and o2 and show
that {X,} hastheinvertible representation (in terms of {W,})

1
X, == W[ + 5W,,1.

Let {X,} denote the unique stationary solution of the autoregressive equations
X, =¢X, 1+ Z;, r=0,41,...,
where {Z,} ~ WN(0,0?) and |¢| > 1. Then X, is given by the expression
(2.2.11). Define the new sequence
W, =X, - EXzfl,
¢

show that {W,} ~ WN (0, 03 ), and express o, in terms of o2 and ¢. These
calculations show that {X,} isthe (unique stationary) solution of the causal AR
equations

1
X,:ax,_ljuwt, t=0,41,....

a. Calculate the autocovariance function y (-) of the stationary time series
Yo =p+Zi+601Z 1+ 00Z 1o, {Z}~WN|(O, 02) .

b. Use the program ITSM to compute the sample mean and sample autoco-
variances y (h), 0 < h < 20, of {VVyX,}, where {X,,t =1,...,72} isthe
accidental deaths series DEATHS.TSM of Example 1.1.3.

¢. By equating 7 (1), y(11), and y (12) from part (b) to ¥ (1), ¥ (11), and y (12),
respectively, from part (a), find amodel of theform defined in (a) to represent
{VVX}
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3.10. By matching the autocovariances and sample autocovariances at lags 0 and 1,
fit amodel of the form

X;—pu=0X21— )+ 7, {Zt}NWN(O’UZ)a

to the data STRIKES.TSM of Example 1.1.6. Use the fitted model to compute
the best predictor of the number of strikesin 1981. Estimate the mean sguared
error of your predictor and construct 95% prediction bounds for the number of
strikesin 1981 assuming that {Z,} ~ iid N(0, 6?).

3.11. Show that the value at lag 2 of the partial ACF of the MA(1) process
X, =Z,+6Z,_4, t=0%1,...,
where {Z,} ~ WN(0, 0?), is
a(2) = —0%/ (L+67+06%).
3.12. For the MA(1) process of Problem 3.11, the best linear predictor of X, ; based
onXq, ..., X,is
Xus1 = $naXo + -+ Gun Xy,

where ¢, = (¢u1, - -, ¢un) Stisfies R,¢p, = p, (equation (2.5.23)). By sub-
stituting the appropriate correlations into R, and p, and solving the resulting
equations (starting with the last and working up), show that for 1 < j < n,
Gun-j = (=) (L+ 62+ --- + 6%)¢,, and hence that the PACF a(n) :=
¢nn = _(_Q)n/(l + 92 +---+ 02”)

3.13. The coefficients6,; and one-step mean squared errorsv, = rpo? for thegeneral
causal ARMA(1,1) process in Example 3.3.3 can be found as follows:
a. Show that if y, := r,/(r, — 1), then the last of equations (3.3.9) can be

rewritten in the form

Yn = 9_2yn—1 + 17 n = 1

b. Deducethat y, = 9*2"y0+27=16*2<f*1) and hencedeterminer, and 6,1, n =
1,2 ....

c. BEvaluate the limitsasn — oo of r, and 6,, in the two cases |§| < 1 and
0] > 1.





