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Preface

This book is aimed at the reader who wishes to gain a working knowledge of time
series and forecasting methods as applied in economics, engineering and the natural
and social sciences. Unlike our earlier book, Time Series: Theory and Methods, re-
ferred to in the text as TSTM, this one requires only a knowledge of basic calculus,
matrix algebra and elementary statistics at the level (for example) of Mendenhall,
Wackerly and Scheaffer (1990). It is intended for upper-level undergraduate students
and beginning graduate students.

The emphasis is on methods and the analysis of data sets. The student version
of the time series package ITSM2000, enabling the reader to reproduce most of the
calculations in the text (and to analyze further data sets of the reader’s own choosing),
is included on the CD-ROM which accompanies the book. The data sets used in the
book are also included. The package requires an IBM-compatible PC operating under
Windows 95, NT version 4.0, or a later version of either of these operating systems.
The program ITSM can be run directly from the CD-ROM or installed on a hard disk
as described at the beginning of Appendix D, where a detailed introduction to the
package is provided.

Very little prior familiarity with computing is required in order to use the computer
package. Detailed instructions for its use are found in the on-line help files which
are accessed, when the program ITSM is running, by selecting the menu option
Help>Contents and selecting the topic of interest. Under the heading Data you
will find information concerning the data sets stored on the CD-ROM. The book can
also be used in conjunction with other computer packages for handling time series.
Chapter 14 of the book by Venables and Ripley (1994) describes how to perform
many of the calculations using S-plus.

There are numerous problems at the end of each chapter, many of which involve
use of the programs to study the data sets provided.

To make the underlying theory accessible to a wider audience, we have stated
some of the key mathematical results without proof, but have attempted to ensure
that the logical structure of the development is otherwise complete. (References to
proofs are provided for the interested reader.)
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viii Preface

Since the upgrade to ITSM2000 occurred after the first edition of this book
appeared, we have taken the opportunity, in this edition, to coordinate the text with
the new software, to make a number of corrections pointed out by readers of the first
edition and to expand on several of the topics treated only briefly in the first edition.

Appendix D, the software tutorial, has been rewritten in order to be compatible
with the new version of the software.

Some of the other extensive changes occur in (i) Section 6.6, which highlights
the role of the innovations algorithm in generalized least squares and maximum
likelihood estimation of regression models with time series errors, (ii) Section 6.4,
where the treatment of forecast functions for ARIMA processes has been expanded
and (iii) Section 10.3, which now includes GARCH modeling and simulation, topics
of considerable importance in the analysis of financial time series. The new material
has been incorporated into the accompanying software, to which we have also added
the option Autofit. This streamlines the modeling of time series data by fitting
maximum likelihood ARMA(p, q) models for a specified range of (p, q) values and
automatically selecting the model with smallest AICC value.

There is sufficient material here for a full-year introduction to univariate and mul-
tivariate time series and forecasting. Chapters 1 through 6 have been used for several
years in introductory one-semester courses in univariate time series at Colorado State
University and Royal Melbourne Institute of Technology. The chapter on spectral
analysis can be excluded without loss of continuity by readers who are so inclined.

We are greatly indebted to the readers of the first edition and especially to Matthew
Calder, coauthor of the new computer package, and Anthony Brockwell for their
many valuable comments and suggestions. We also wish to thank Colorado State
University, the National Science Foundation, Springer-Verlag and our families for
their continuing support during the preparation of this second edition.

Fort Collins, Colorado Peter J. Brockwell
August 2001 Richard A. Davis
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1 Introduction

1.1 Examples of Time Series
1.2 Objectives of Time Series Analysis
1.3 Some Simple Time Series Models
1.4 Stationary Models and the Autocorrelation Function
1.5 Estimation and Elimination of Trend and Seasonal Components
1.6 Testing the Estimated Noise Sequence

In this chapter we introduce some basic ideas of time series analysis and stochastic
processes. Of particular importance are the concepts of stationarity and the autocovari-
ance and sample autocovariance functions. Some standard techniques are described
for the estimation and removal of trend and seasonality (of known period) from an
observed time series. These are illustrated with reference to the data sets in Section
1.1. The calculations in all the examples can be carried out using the time series pack-
age ITSM, the student version of which is supplied on the enclosed CD. The data sets
are contained in files with names ending in .TSM. For example, the Australian red
wine sales are filed as WINE.TSM. Most of the topics covered in this chapter will
be developed more fully in later sections of the book. The reader who is not already
familiar with random variables and random vectors should first read Appendix A,
where a concise account of the required background is given.

1.1 Examples of Time Series

A time series is a set of observations xt , each one being recorded at a specific time t .
A discrete-time time series (the type to which this book is primarily devoted) is one
in which the set T0 of times at which observations are made is a discrete set, as is the
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Figure 1-1
The Australian red wine

sales, Jan. ‘80 – Oct. ‘91.  
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case, for example, when observations are made at fixed time intervals. Continuous-
time time series are obtained when observations are recorded continuously over some
time interval, e.g., when T0 � [0, 1].

Example 1.1.1 Australian red wine sales; WINE.TSM

Figure 1.1 shows the monthly sales (in kiloliters) of red wine by Australian winemak-
ers from January 1980 through October 1991. In this case the set T0 consists of the
142 times {(Jan. 1980), (Feb. 1980), . . . ,(Oct. 1991)}. Given a set of n observations
made at uniformly spaced time intervals, it is often convenient to rescale the time
axis in such a way that T0 becomes the set of integers {1, 2, . . . , n}. In the present
example this amounts to measuring time in months with (Jan. 1980) as month 1. Then
T0 is the set {1, 2, . . . , 142}. It appears from the graph that the sales have an upward
trend and a seasonal pattern with a peak in July and a trough in January. To plot the
data using ITSM, run the program by double-clicking on the ITSM icon and then
select the option File>Project>Open>Univariate, click OK, and select the file
WINE.TSM. The graph of the data will then appear on your screen.

Example 1.1.2 All-star baseball games, 1933–1995

Figure 1.2 shows the results of the all-star games by plotting xt , where

xt �
{

1 if the National League won in year t,

−1 if the American League won in year t .
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Figure 1-2
Results of the

all-star baseball
games, 1933–1995.
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This is a series with only two possible values, ±1. It also has some missing values,
since no game was played in 1945, and two games were scheduled for each of the
years 1959–1962.

Example 1.1.3 Accidental deaths, U.S.A., 1973–1978; DEATHS.TSM

Like the red wine sales, the monthly accidental death figures show a strong seasonal
pattern, with the maximum for each year occurring in July and the minimum for each
year occurring in February. The presence of a trend in Figure 1.3 is much less apparent
than in the wine sales. In Section 1.5 we shall consider the problem of representing
the data as the sum of a trend, a seasonal component, and a residual term.

Example 1.1.4 A signal detection problem; SIGNAL.TSM

Figure 1.4 shows simulated values of the series

Xt � cos
(

t

10

)
+Nt, t � 1, 2, . . . , 200,

where {Nt} is a sequence of independent normal random variables, with mean 0
and variance 0.25. Such a series is often referred to as signal plus noise, the signal
being the smooth function, St � cos( t

10 ) in this case. Given only the data Xt , how
can we determine the unknown signal component? There are many approaches to
this general problem under varying assumptions about the signal and the noise. One
simple approach is to smooth the data by expressing Xt as a sum of sine waves of
various frequencies (see Section 4.2) and eliminating the high-frequency components.
If we do this to the values of {Xt} shown in Figure 1.4 and retain only the lowest
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Figure 1-3
The monthly accidental

deaths data, 1973–1978.  
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Figure 1-5
Population of the
U.S.A. at ten-year

intervals, 1790–1990.  
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Figure 1-6
Strikes in the

U.S.A., 1951–1980.  
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3.5% of the frequency components, we obtain the estimate of the signal also shown
in Figure 1.4. The waveform of the signal is quite close to that of the true signal in
this case, although its amplitude is somewhat smaller.

Example 1.1.5 Population of the U.S.A., 1790–1990; USPOP.TSM

The population of the U.S.A., measured at ten-year intervals, is shown in Figure 1.5.
The graph suggests the possibility of fitting a quadratic or exponential trend to the
data. We shall explore this further in Section 1.3.

Example 1.1.6 Number of strikes per year in the U.S.A., 1951–1980; STRIKES.TSM

The annual numbers of strikes in the U.S.A. for the years 1951–1980 are shown in
Figure 1.6. They appear to fluctuate erratically about a slowly changing level.

1.2 Objectives of Time Series Analysis

The examples considered in Section 1.1 are an extremely small sample from the
multitude of time series encountered in the fields of engineering, science, sociology,
and economics. Our purpose in this book is to study techniques for drawing inferences
from such series. Before we can do this, however, it is necessary to set up a hypothetical
probability model to represent the data. After an appropriate family of models has
been chosen, it is then possible to estimate parameters, check for goodness of fit to
the data, and possibly to use the fitted model to enhance our understanding of the
mechanism generating the series. Once a satisfactory model has been developed, it
may be used in a variety of ways depending on the particular field of application.

The model may be used simply to provide a compact description of the data. We
may, for example, be able to represent the accidental deaths data of Example 1.1.3 as
the sum of a specified trend, and seasonal and random terms. For the interpretation
of economic statistics such as unemployment figures, it is important to recognize the
presence of seasonal components and to remove them so as not to confuse them with
long-term trends. This process is known as seasonal adjustment. Other applications
of time series models include separation (or filtering) of noise from signals as in
Example 1.1.4, prediction of future values of a series such as the red wine sales in
Example 1.1.1 or the population data in Example 1.1.5, testing hypotheses such as
global warming using recorded temperature data, predicting one series from obser-
vations of another, e.g., predicting future sales using advertising expenditure data,
and controlling future values of a series by adjusting parameters. Time series models
are also useful in simulation studies. For example, the performance of a reservoir
depends heavily on the random daily inputs of water to the system. If these are mod-
eled as a time series, then we can use the fitted model to simulate a large number
of independent sequences of daily inputs. Knowing the size and mode of operation
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of the reservoir, we can determine the fraction of the simulated input sequences that
cause the reservoir to run out of water in a given time period. This fraction will then
be an estimate of the probability of emptiness of the reservoir at some time in the
given period.

1.3 Some Simple Time Series Models

An important part of the analysis of a time series is the selection of a suitable proba-
bility model (or class of models) for the data. To allow for the possibly unpredictable
nature of future observations it is natural to suppose that each observation xt is a
realized value of a certain random variable Xt .

Definition 1.3.1 A time series model for the observed data {xt} is a specification of the joint
distributions (or possibly only the means and covariances) of a sequence of random
variables {Xt} of which {xt} is postulated to be a realization.

Remark. We shall frequently use the term time series to mean both the data and
the process of which it is a realization.

A complete probabilistic time series model for the sequence of random vari-
ables {X1, X2, . . .} would specify all of the joint distributions of the random vectors
(X1, . . . , Xn)

′, n � 1, 2, . . ., or equivalently all of the probabilities

P [X1 ≤ x1, . . . , Xn ≤ xn], −∞ < x1, . . . , xn < ∞, n � 1, 2, . . . .

Such a specification is rarely used in time series analysis (unless the data are generated
by some well-understood simple mechanism), since in general it will contain far too
many parameters to be estimated from the available data. Instead we specify only the
first- and second-order moments of the joint distributions, i.e., the expected values
EXt and the expected products E(Xt+hXt), t � 1, 2, . . ., h � 0, 1, 2, . . ., focusing
on properties of the sequence {Xt} that depend only on these. Such properties of {Xt}
are referred to as second-order properties. In the particular case where all the joint
distributions are multivariate normal, the second-order properties of {Xt} completely
determine the joint distributions and hence give a complete probabilistic characteri-
zation of the sequence. In general we shall lose a certain amount of information by
looking at time series “through second-order spectacles”; however, as we shall see
in Chapter 2, the theory of minimum mean squared error linear prediction depends
only on the second-order properties, thus providing further justification for the use
of the second-order characterization of time series models.

Figure 1.7 shows one of many possible realizations of {St , t � 1, . . . , 200}, where
{St} is a sequence of random variables specified in Example 1.3.3 below. In most
practical problems involving time series we see only one realization. For example,
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there is only one available realization of Fort Collins’s annual rainfall for the years
1900–1996, but we imagine it to be one of the many sequences that might have
occurred. In the following examples we introduce some simple time series models.
One of our goals will be to expand this repertoire so as to have at our disposal a broad
range of models with which to try to match the observed behavior of given data sets.

1.3.1 Some Zero-Mean Models

Example 1.3.1 iid noise

Perhaps the simplest model for a time series is one in which there is no trend or
seasonal component and in which the observations are simply independent and iden-
tically distributed (iid) random variables with zero mean. We refer to such a sequence
of random variables X1, X2, . . . as iid noise. By definition we can write, for any
positive integer n and real numbers x1, . . . , xn,

P [X1 ≤ x1, . . . , Xn ≤ xn] � P [X1 ≤ x1] · · ·P [Xn ≤ xn] � F(x1) · · ·F(xn),
where F(·) is the cumulative distribution function (see Section A.1) of each of
the identically distributed random variables X1, X2, . . . . In this model there is no
dependence between observations. In particular, for all h ≥ 1 and all x, x1, . . . , xn,

P [Xn+h ≤ x|X1 � x1, . . . , Xn � xn] � P [Xn+h ≤ x],

showing that knowledge of X1, . . . , Xn is of no value for predicting the behavior
of Xn+h. Given the values of X1, . . . , Xn, the function f that minimizes the mean
squared error E

[
(Xn+h − f (X1, . . . , Xn))

2
]

is in fact identically zero (see Problem
1.2). Although this means that iid noise is a rather uninteresting process for forecast-
ers, it plays an important role as a building block for more complicated time series
models.

Example 1.3.2 A binary process

As an example of iid noise, consider the sequence of iid random variables {Xt, t �
1, 2, . . . , } with

P [Xt � 1] � p, P [Xt � −1] � 1 − p,

where p � 1
2 . The time series obtained by tossing a penny repeatedly and scoring

+1 for each head and −1 for each tail is usually modeled as a realization of this
process. A priori we might well consider the same process as a model for the all-star
baseball games in Example 1.1.2. However, even a cursory inspection of the results
from 1963–1982, which show the National League winning 19 of 20 games, casts
serious doubt on the hypothesis P [Xt � 1] � 1

2 .
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Example 1.3.3 Random walk

The random walk {St , t � 0, 1, 2, . . .} (starting at zero) is obtained by cumulatively
summing (or “integrating”) iid random variables. Thus a random walk with zero mean
is obtained by defining S0 � 0 and

St � X1 +X2 + · · · +Xt, for t � 1, 2, . . . ,

where {Xt} is iid noise. If {Xt} is the binary process of Example 1.3.2, then {St , t �
0, 1, 2, . . . , } is called a simple symmetric random walk. This walk can be viewed
as the location of a pedestrian who starts at position zero at time zero and at each
integer time tosses a fair coin, stepping one unit to the right each time a head appears
and one unit to the left for each tail. A realization of length 200 of a simple symmetric
random walk is shown in Figure 1.7. Notice that the outcomes of the coin tosses can
be recovered from {St , t � 0, 1, . . .} by differencing. Thus the result of the t th toss
can be found from St − St−1 � Xt .

1.3.2 Models with Trend and Seasonality

In several of the time series examples of Section 1.1 there is a clear trend in the data.
An increasing trend is apparent in both the Australian red wine sales (Figure 1.1)
and the population of the U.S.A. (Figure 1.5). In both cases a zero-mean model for
the data is clearly inappropriate. The graph of the population data, which contains no
apparent periodic component, suggests trying a model of the form

Xt � mt + Yt ,

Figure 1-7
One realization of a
simple random walk

{St , t � 0, 1, 2, . . . ,200}
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where mt is a slowly changing function known as the trend component and Yt has
zero mean. A useful technique for estimating mt is the method of least squares (some
other methods are considered in Section 1.5).

In the least squares procedure we attempt to fit a parametric family of functions,
e.g.,

mt � a0 + a1t + a2t
2, (1.3.1)

to the data {x1, . . . , xn} by choosing the parameters, in this illustration a0, a1, and a2, to
minimize

∑n

t�1(xt−mt)
2. This method of curve fitting is called least squares regres-

sion and can be carried out using the program ITSM and selecting the Regression
option.

Example 1.3.4 Population of the U.S.A., 1790–1990

To fit a function of the form (1.3.1) to the population data shown in Figure 1.5 we
relabel the time axis so that t � 1 corresponds to 1790 and t � 21 corresponds to
1990. Run ITSM, select File>Project>Open>Univariate, and open the file US-
POP.TSM. Then select Regression>Specify, choose Polynomial Regression
with order equal to 2, and click OK. Then select Regression>Estimation>Least
Squares, and you will obtain the following estimated parameter values in the model
(1.3.1):

â0 � 6.9579 × 106,

â1 � −2.1599 × 106,

and

â2 � 6.5063 × 105.

A graph of the fitted function is shown with the original data in Figure 1.8. The
estimated values of the noise process Yt , 1 ≤ t ≤ 21, are the residuals obtained by
subtraction of m̂t � â0 + â1t + â2t

2 from xt .
The estimated trend component m̂t furnishes us with a natural predictor of future

values of Xt . For example, if we estimate the noise Y22 by its mean value, i.e., zero,
then (1.3.1) gives the estimated U.S. population for the year 2000 as

m̂22 � 6.9579 × 106 − 2.1599 × 106 × 22 + 6.5063 × 105 × 222 � 274.35 × 106.

However, if the residuals {Yt} are highly correlated, we may be able to use their values
to give a better estimate of Y22 and hence of the population X22 in the year 2000.

Example 1.3.5 Level of Lake Huron 1875–1972; LAKE.DAT

A graph of the level in feet of Lake Huron (reduced by 570) in the years 1875–1972
is displayed in Figure 1.9. Since the lake level appears to decline at a roughly linear
rate, ITSM was used to fit a model of the form

Xt � a0 + a1t + Yt , t � 1, . . . , 98 (1.3.2)
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Figure 1-8
Population of the U.S.A.

showing the quadratic trend
fitted by least squares.  
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(with the time axis relabeled as in Example 1.3.4). The least squares estimates of the
parameter values are

â0 � 10.202 and â1 � −.0242.

(The resulting least squares line, â0 + â1t , is also displayed in Figure 1.9.) The
estimates of the noise,Yt , in the model (1.3.2) are the residuals obtained by subtracting
the least squares line from xt and are plotted in Figure 1.10. There are two interesting

Figure 1-9
Level of Lake Huron

1875–1972 showing the
line fitted by least squares.
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Figure 1-10
Residuals from fitting a
line to the Lake Huron

data in Figure 1.9.
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features of the graph of the residuals. The first is the absence of any discernible trend.
The second is the smoothness of the graph. (In particular, there are long stretches of
residuals that have the same sign. This would be very unlikely to occur if the residuals
were observations of iid noise with zero mean.) Smoothness of the graph of a time
series is generally indicative of the existence of some form of dependence among the
observations.

Such dependence can be used to advantage in forecasting future values of the
series. If we were to assume the validity of the fitted model with iid residuals {Yt}, then
the minimum mean squared error predictor of the next residual (Y99) would be zero
(by Problem 1.2). However, Figure 1.10 strongly suggests that Y99 will be positive.

How then do we quantify dependence, and how do we construct models for fore-
casting that incorporate dependence of a particular type? To deal with these questions,
Section 1.4 introduces the autocorrelation function as a measure of dependence, and
stationary processes as a family of useful models exhibiting a wide variety of depen-
dence structures.

Harmonic Regression
Many time series are influenced by seasonally varying factors such as the weather, the
effect of which can be modeled by a periodic component with fixed known period. For
example, the accidental deaths series (Figure 1.3) shows a repeating annual pattern
with peaks in July and troughs in February, strongly suggesting a seasonal factor
with period 12. In order to represent such a seasonal effect, allowing for noise but
assuming no trend, we can use the simple model,

Xt � st + Yt ,
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where st is a periodic function of t with period d (st−d � st ). A convenient choice for
st is a sum of harmonics (or sine waves) given by

st � a0 +
k∑

j�1

(aj cos(λj t)+ bj sin(λj t)), (1.3.3)

where a0, a1, . . . , ak and b1, . . . , bk are unknown parameters and λ1, . . . , λk are fixed
frequencies, each being some integer multiple of 2π/d. To carry out harmonic re-
gression using ITSM, select Regression>Specify and check Include intercept
term and Harmonic Regression. Then specify the number of harmonics (k in
(1.3.3)) and enter k integer-valued Fourier indices f1, . . . , fk. For a sine wave with
period d, set f1 � n/d, where n is the number of observations in the time series. (If
n/d is not an integer, you will need to delete a few observations from the beginning
of the series to make it so.) The other k− 1 Fourier indices should be positive integer
multiples of the first, corresponding to harmonics of the fundamental sine wave with
period d. Thus to fit a single sine wave with period 365 to 365 daily observations we
would choose k � 1 and f1 � 1. To fit a linear combination of sine waves with periods
365/j , j � 1, . . . , 4, we would choose k � 4 and fj � j , j � 1, . . . , 4. Once k and
f1, . . . , fk have been specified, click OK and then select Regression>Estimation
>Least Squares to obtain the required regression coefficients. To see how well the
fitted function matches the data, select Regression>Show fit.

Example 1.3.6 Accidental deaths

To fit a sum of two harmonics with periods twelve months and six months to the
monthly accidental deaths data x1, . . . , xn with n � 72, we choose k � 2, f1 �

Figure 1-11
The estimated harmonic

component of the
accidental deaths

data from ITSM.  

(t
ho

us
an

ds
)

1973 1974 1975 1976 1977 1978

7
8

9
10

11



The Bartlett Press, Inc. brockwel 8 · i · 2002 1:59 p.m. Page 14

14 Chapter 1 Introduction

n/12 � 6, and f2 � n/6 � 12. Using ITSM as described above, we obtain the fitted
function shown in Figure 1.11. As can be seen from the figure, the periodic character
of the series is captured reasonably well by this fitted function. In practice, it is worth
experimenting with several different combinations of harmonics in order to find a sat-
isfactory estimate of the seasonal component. The program ITSM also allows fitting
a linear combination of harmonics and polynomial trend by checking both Harmonic
Regression and Polynomial Regression in the Regression>Specification
dialog box. Other methods for dealing with seasonal variation in the presence of
trend are described in Section 1.5.

1.3.3 A General Approach to Time Series Modeling

The examples of the previous section illustrate a general approach to time series
analysis that will form the basis for much of what is done in this book. Before
introducing the ideas of dependence and stationarity, we outline this approach to
provide the reader with an overview of the way in which the various ideas of this
chapter fit together.

• Plot the series and examine the main features of the graph, checking in particular
whether there is
(a) a trend,
(b) a seasonal component,
(c) any apparent sharp changes in behavior,
(d) any outlying observations.

• Remove the trend and seasonal components to get stationary residuals (as defined
in Section 1.4). To achieve this goal it may sometimes be necessary to apply a
preliminary transformation to the data. For example, if the magnitude of the
fluctuations appears to grow roughly linearly with the level of the series, then
the transformed series {lnX1, . . . , lnXn} will have fluctuations of more constant
magnitude. See, for example, Figures 1.1 and 1.17. (If some of the data are
negative, add a positive constant to each of the data values to ensure that all
values are positive before taking logarithms.) There are several ways in which
trend and seasonality can be removed (see Section 1.5), some involving estimating
the components and subtracting them from the data, and others depending on
differencing the data, i.e., replacing the original series {Xt} by {Yt :� Xt −Xt−d}
for some positive integer d. Whichever method is used, the aim is to produce a
stationary series, whose values we shall refer to as residuals.

• Choose a model to fit the residuals, making use of various sample statistics in-
cluding the sample autocorrelation function to be defined in Section 1.4.

• Forecasting will be achieved by forecasting the residuals and then inverting the
transformations described above to arrive at forecasts of the original series {Xt}.



The Bartlett Press, Inc. brockwel 8 · i · 2002 1:59 p.m. Page 15

1.4 Stationary Models and the Autocorrelation Function 15

• An extremely useful alternative approach touched on only briefly in this book is
to express the series in terms of its Fourier components, which are sinusoidal
waves of different frequencies (cf. Example 1.1.4). This approach is especially
important in engineering applications such as signal processing and structural
design. It is important, for example, to ensure that the resonant frequency of a
structure does not coincide with a frequency at which the loading forces on the
structure have a particularly large component.

1.4 Stationary Models and the Autocorrelation Function

Loosely speaking, a time series {Xt, t � 0,±1, . . .} is said to be stationary if it has sta-
tistical properties similar to those of the “time-shifted” series {Xt+h, t � 0,±1, . . .},
for each integer h. Restricting attention to those properties that depend only on the
first- and second-order moments of {Xt}, we can make this idea precise with the
following definitions.

Definition 1.4.1 Let {Xt} be a time series with E(X2
t ) < ∞. The mean function of {Xt} is

µX(t) � E(Xt).

The covariance function of {Xt} is

γX(r, s) � Cov(Xr,Xs) � E[(Xr − µX(r))(Xs − µX(s))]

for all integers r and s.

Definition 1.4.2 {Xt} is (weakly) stationary if

(i) µX(t) is independent of t,

and

(ii) γX(t + h, t) is independent of t for each h.

Remark 1. Strict stationarity of a time series {Xt, t � 0,±1, . . .} is defined by the
condition that (X1, . . . , Xn) and (X1+h, . . . , Xn+h) have the same joint distributions
for all integers h and n > 0. It is easy to check that if {Xt} is strictly stationary and
EX2

t < ∞ for all t , then {Xt} is also weakly stationary (Problem 1.3). Whenever we
use the term stationary we shall mean weakly stationary as in Definition 1.4.2, unless
we specifically indicate otherwise.

Remark 2. In view of condition (ii), whenever we use the term covariance function
with reference to a stationary time series {Xt} we shall mean the function γX of one
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variable, defined by

γX(h) :� γX(h, 0) � γX(t + h, t).

The function γX(·) will be referred to as the autocovariance function and γX(h) as its
value at lag h.

Definition 1.4.3 Let {Xt} be a stationary time series. The autocovariance function (ACVF) of
{Xt} at lag h is

γX(h) � Cov(Xt+h, Xt).

The autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) ≡ γX(h)

γX(0)
� Cor(Xt+h, Xt).

In the following examples we shall frequently use the easily verified linearity prop-
erty of covariances, that if EX2 < ∞, EY 2 < ∞, EZ2 < ∞ and a, b, and c are any
real constants, then

Cov(aX + bY + c, Z) � a Cov(X,Z)+ bCov(Y, Z).

Example 1.4.1 iid noise

If {Xt} is iid noise and E(X2
t ) � σ 2 < ∞, then the first requirement of Definition

1.4.2 is obviously satisfied, since E(Xt) � 0 for all t . By the assumed independence,

γX(t + h, t) �
{
σ 2, if h � 0,

0, if h �� 0,

which does not depend on t . Hence iid noise with finite second moment is stationary.
We shall use the notation

{Xt} ∼ IID
(
0, σ 2

)
to indicate that the random variables Xt are independent and identically distributed
random variables, each with mean 0 and variance σ 2.

Example 1.4.2 White noise

If {Xt} is a sequence of uncorrelated random variables, each with zero mean and
variance σ 2, then clearly {Xt} is stationary with the same covariance function as the
iid noise in Example 1.4.1. Such a sequence is referred to as white noise (with mean
0 and variance σ 2). This is indicated by the notation

{Xt} ∼ WN
(
0, σ 2

)
.
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Clearly, every IID
(
0, σ 2

)
sequence is WN

(
0, σ 2

)
but not conversely (see Problem 1.8

and the ARCH(1) process of Section 10.3).

Example 1.4.3 The random walk

If {St} is the random walk defined in Example 1.3.3 with {Xt} as in Example 1.4.1,
then ESt � 0, E(S2

t ) � tσ 2 < ∞ for all t , and, for h ≥ 0,

γS(t + h, t) � Cov(St+h, St )

� Cov(St +Xt+1 + · · · +Xt+h, St )

� Cov(St , St )

� tσ 2.

Since γS(t + h, t) depends on t , the series {St} is not stationary.

Example 1.4.4 First-order moving average or MA(1) process

Consider the series defined by the equation

Xt � Zt + θZt−1, t � 0,±1, . . . , (1.4.1)

where {Zt} ∼ WN
(
0, σ 2

)
and θ is a real-valued constant. From (1.4.1) we see that

EXt � 0, EX2
t � σ 2(1 + θ 2) < ∞, and

γX(t + h, t) �


σ 2

(
1 + θ 2

)
, if h � 0,

σ 2θ, if h � ±1,

0, if |h| > 1.

Thus the requirements of Definition 1.4.2 are satisfied, and {Xt} is stationary. The
autocorrelation function of {Xt} is

ρX(h) �


1, if h � 0,

θ/
(
1 + θ 2

)
, if h � ±1,

0, if |h| > 1.

Example 1.4.5 First-order autoregression or AR(1) process

Let us assume now that {Xt} is a stationary series satisfying the equations

Xt � φXt−1 + Zt, t � 0,±1, . . . , (1.4.2)

where {Zt} ∼ WN(0, σ 2), |φ| < 1, andZt is uncorrelated withXs for each s < t . (We
shall show in Section 2.2 that there is in fact exactly one such solution of (1.4.2).) By
taking expectations on each side of (1.4.2) and using the fact that EZt � 0, we see
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at once that

EXt � 0.

To find the autocorrelation function of {Xt} we multiply each side of (1.4.2) by Xt−h
(h > 0) and then take expectations to get

γX(h) � Cov(Xt ,Xt−h)

� Cov(φXt−1, Xt−h)+ Cov(Zt , Xt−h)

� φγX(h− 1)+ 0 � · · · � φhγ
X
(0).

Observing that γ (h) � γ (−h) and using Definition 1.4.3, we find that

ρX(h) � γX(h)

γX(0)
� φ|h|, h � 0,±1, . . . .

It follows from the linearity of the covariance function in each of its arguments and
the fact that Zt is uncorrelated with Xt−1 that

γX(0) � Cov(Xt ,Xt) � Cov(φXt−1 + Zt, φXt−1 + Zt) � φ2γX(0)+ σ 2

and hence that γX(0) � σ 2/
(
1 − φ2

)
.

1.4.1 The Sample Autocorrelation Function

Although we have just seen how to compute the autocorrelation function for a few
simple time series models, in practical problems we do not start with a model, but
with observed data {x1, x2, . . . , xn}. To assess the degree of dependence in the data
and to select a model for the data that reflects this, one of the important tools we
use is the sample autocorrelation function (sample ACF) of the data. If we believe
that the data are realized values of a stationary time series {Xt}, then the sample
ACF will provide us with an estimate of the ACF of {Xt}. This estimate may suggest
which of the many possible stationary time series models is a suitable candidate for
representing the dependence in the data. For example, a sample ACF that is close
to zero for all nonzero lags suggests that an appropriate model for the data might
be iid noise. The following definitions are natural sample analogues of those for the
autocovariance and autocorrelation functions given earlier for stationary time series
models.
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Definition 1.4.4 Let x1, . . . , xn be observations of a time series. The sample mean of x1, . . . , xn is

x̄ � 1
n

n∑
t�1

xt .

The sample autocovariance function is

γ̂ (h) :� n−1
n−|h|∑
t�1

(xt+|h| − x̄)(xt − x̄), −n < h < n.

The sample autocorrelation function is

ρ̂(h) � γ̂ (h)

γ̂ (0)
, −n < h < n.

Remark 3. For h ≥ 0, γ̂ (h) is approximately equal to the sample covariance of
the n − h pairs of observations (x1, x1+h), (x2, x2+h), . . . , (xn−h, xn). The difference
arises from use of the divisor n instead of n − h and the subtraction of the overall
mean, x̄, from each factor of the summands. Use of the divisor n ensures that the
sample covariance matrix ̂n :� [γ̂ (i − j)]ni,j�1 is nonnegative definite (see Section
2.4.2).

Remark 4. Like the sample covariance matrix defined in Remark 3, the sample
correlation matrix R̂n :� [ρ̂(i − j)]ni,j�1 is nonnegative definite. Each of its diagonal
elements is equal to 1, since ρ̂(0) � 1.

Figure 1-12
200 simulated values

of iid N(0,1) noise.
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Example 1.4.6 Figure 1.12 shows 200 simulated values of normally distributed iid (0, 1), denoted
by IID N(0, 1), noise. Figure 1.13 shows the corresponding sample autocorrelation
function at lags 0, 1, . . . , 40. Since ρ(h) � 0 for h > 0, one would also expect the
corresponding sample autocorrelations to be near 0. It can be shown, in fact, that for iid
noise with finite variance, the sample autocorrelations ρ̂(h), h > 0, are approximately
IID N(0, 1/n) for n large (see TSTM p. 222). Hence, approximately 95% of the
sample autocorrelations should fall between the bounds ±1.96/

√
n (since 1.96 is

the .975 quantile of the standard normal distribution). Therefore, in Figure 1.13 we
would expect roughly 40(.05) � 2 values to fall outside the bounds. To simulate 200
values of IID N(0, 1) noise using ITSM, select File>Project>New>Univariate
then Model>Simulate. In the resulting dialog box, enter 200 for the required Number
of Observations. (The remaining entries in the dialog box can be left as they are,
since the model assumed by ITSM, until you enter another, is IID N(0, 1) noise. If
you wish to reproduce exactly the same sequence at a later date, record the Random
Number Seed for later use. By specifying different values for the random number
seed you can generate independent realizations of your time series.) Click on OK and
you will see the graph of your simulated series. To see its sample autocorrelation
function together with the autocorrelation function of the model that generated it,
click on the third yellow button at the top of the screen and you will see the two
graphs superimposed (with the latter in red.) The horizontal lines on the graph are
the bounds ±1.96/

√
n.

Remark 5. The sample autocovariance and autocorrelation functions can be com-
puted for any data set {x1, . . . , xn} and are not restricted to observations from a

Figure 1-13
The sample autocorrelation
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Figure 1-14
The sample autocorrelation

function for the Australian
red wine sales showing
the bounds ±1.96/
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stationary time series. For data containing a trend, |ρ̂(h)| will exhibit slow decay as
h increases, and for data with a substantial deterministic periodic component, |ρ̂(h)|
will exhibit similar behavior with the same periodicity. (See the sample ACF of the
Australian red wine sales in Figure 1.14 and Problem 1.9.) Thus ρ̂(·) can be useful
as an indicator of nonstationarity (see also Section 6.1).

1.4.2 A Model for the Lake Huron Data

As noted earlier, an iid noise model for the residuals {y1, . . . , y98} obtained by fitting
a straight line to the Lake Huron data in Example 1.3.5 appears to be inappropriate.
This conclusion is confirmed by the sample ACF of the residuals (Figure 1.15), which
has three of the first forty values well outside the bounds ±1.96/

√
98.

The roughly geometric decay of the first few sample autocorrelations (with
ρ̂(h + 1)/ρ̂(h) ≈ 0.7) suggests that an AR(1) series (with φ ≈ 0.7) might pro-
vide a reasonable model for these residuals. (The form of the ACF for an AR(1)
process was computed in Example 1.4.5.)

To explore the appropriateness of such a model, consider the points (y1, y2),
(y2, y3), . . . , (y97, y98) plotted in Figure 1.16. The graph does indeed suggest a linear
relationship between yt and yt−1. Using simple least squares estimation to fit a straight
line of the form yt � ayt−1, we obtain the model

Yt � .791Yt−1 + Zt, (1.4.3)

where {Zt} is iid noise with variance
∑98

t�2(yt − .791yt−1)
2/97 � .5024. The sample

ACF of the estimated noise sequence zt � yt − .791yt−1, t � 2, . . . , 98, is slightly
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Figure 1-15
The sample autocorrelation

function for the Lake
Huron residuals of
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outside the bounds ±1.96/
√

97 at lag 1 (ρ̂(1) � .216), but it is inside the bounds for
all other lags up to 40. This check that the estimated noise sequence is consistent with
the iid assumption of (1.4.3) reinforces our belief in the fitted model. More goodness
of fit tests for iid noise sequences are described in Section 1.6. The estimated noise
sequence {zt} in this example passes them all, providing further support for the model
(1.4.3).

Figure 1-16
Scatter plot of

(yt−1, yt ), t � 2, . . . ,98,
for the data in Figure 1.10
showing the least squares

regression line y � .791x .
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A better fit to the residuals in equation (1.3.2) is provided by the second-order
autoregression

Yt � φ1Yt−1 + φ2Yt−2 + Zt, (1.4.4)

where {Zt} is iid noise with variance σ 2. This is analogous to a linear model in
which Yt is regressed on the previous two values Yt−1 and Yt−2 of the time series. The
least squares estimates of the parameters φ1 and φ2, found by minimizing

∑98
t�3(yt −

φ1yt−1 − φ2yt−2)
2, are φ̂1 � 1.002 and φ̂2 � −.2834. The estimate of σ 2 is σ̂ 2 �∑98

t�3(yt − φ̂1yt−1 − φ̂2yt−2)
2/96 � .4460, which is approximately 11% smaller than

the estimate of the noise variance for the AR(1) model (1.4.3). The improved fit is
indicated by the sample ACF of the estimated residuals, yt − φ̂1yt−1 − φ̂2yt−2, which
falls well within the bounds ±1.96/

√
96 for all lags up to 40.

1.5 Estimation and Elimination of Trend and Seasonal Components

The first step in the analysis of any time series is to plot the data. If there are any
apparent discontinuities in the series, such as a sudden change of level, it may be
advisable to analyze the series by first breaking it into homogeneous segments. If
there are outlying observations, they should be studied carefully to check whether
there is any justification for discarding them (as for example if an observation has
been incorrectly recorded). Inspection of a graph may also suggest the possibility
of representing the data as a realization of the process (the classical decomposition
model)

Xt � mt + st + Yt , (1.5.1)

wheremt is a slowly changing function known as a trend component, st is a function
with known period d referred to as a seasonal component, and Yt is a random noise
component that is stationary in the sense of Definition 1.4.2. If the seasonal and noise
fluctuations appear to increase with the level of the process, then a preliminary trans-
formation of the data is often used to make the transformed data more compatible
with the model (1.5.1). Compare, for example, the red wine sales in Figure 1.1 with
the transformed data, Figure 1.17, obtained by applying a logarithmic transformation.
The transformed data do not exhibit the increasing fluctuation with increasing level
that was apparent in the original data. This suggests that the model (1.5.1) is more
appropriate for the transformed than for the original series. In this section we shall
assume that the model (1.5.1) is appropriate (possibly after a preliminary transfor-
mation of the data) and examine some techniques for estimating the components mt ,
st , and Yt in the model.

Our aim is to estimate and extract the deterministic components mt and st in
the hope that the residual or noise component Yt will turn out to be a stationary time
series. We can then use the theory of such processes to find a satisfactory probabilistic



The Bartlett Press, Inc. brockwel 8 · i · 2002 1:59 p.m. Page 24

24 Chapter 1 Introduction

Figure 1-17
The natural logarithms

of the red wine data.
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model for the process Yt , to analyze its properties, and to use it in conjunction with
mt and st for purposes of prediction and simulation of {Xt}.

Another approach, developed extensively by Box and Jenkins (1976), is to apply
differencing operators repeatedly to the series {Xt} until the differenced observations
resemble a realization of some stationary time series {Wt}. We can then use the theory
of stationary processes for the modeling, analysis, and prediction of {Wt} and hence
of the original process. The various stages of this procedure will be discussed in detail
in Chapters 5 and 6.

The two approaches to trend and seasonality removal, (1) by estimation of mt

and st in (1.5.1) and (2) by differencing the series {Xt}, will now be illustrated with
reference to the data introduced in Section 1.1.

1.5.1 Estimation and Elimination of Trend in the Absence of Seasonality

In the absence of a seasonal component the model (1.5.1) becomes the following.

Nonseasonal Model with Trend:

Xt � mt + Yt , t � 1, . . . , n, (1.5.2)

where EYt � 0.

(If EYt �� 0, then we can replace mt and Yt in (1.5.2) with mt + EYt and Yt − EYt ,
respectively.)
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Method 1: Trend Estimation
Moving average and spectral smoothing are essentially nonparametric methods for
trend (or signal) estimation and not for model building. Special smoothing filters can
also be designed to remove periodic components as described under Method S1 below.
The choice of smoothing filter requires a certain amount of subjective judgment, and
it is recommended that a variety of filters be tried in order to get a good idea of the
underlying trend. Exponential smoothing, since it is based on a moving average of
past values only, is often used for forecasting, the smoothed value at the present time
being used as the forecast of the next value.

To construct a model for the data (with no seasonality) there are two general
approaches, both available in ITSM. One is to fit a polynomial trend (by least squares)
as described in Method 1(d) below, then to subtract the fitted trend from the data and
to find an appropriate stationary time series model for the residuals. The other is
to eliminate the trend by differencing as described in Method 2 and then to find an
appropriate stationary model for the differenced series. The latter method has the
advantage that it usually requires the estimation of fewer parameters and does not
rest on the assumption of a trend that remains fixed throughout the observation period.
The study of the residuals (or of the differenced series) is taken up in Section 1.6.

(a) Smoothing with a finite moving average filter. Let q be a nonnegative
integer and consider the two-sided moving average

Wt � (2q + 1)−1
q∑

j�−q
Xt−j (1.5.3)

of the process {Xt} defined by (1.5.2). Then for q + 1 ≤ t ≤ n− q,

Wt � (2q + 1)−1
q∑

j�−q
mt−j + (2q + 1)−1

q∑
j�−q

Yt−j ≈ mt, (1.5.4)

assuming that mt is approximately linear over the interval [t − q, t + q] and that the
average of the error terms over this interval is close to zero (see Problem 1.11).

The moving average thus provides us with the estimates

m̂t � (2q + 1)−1
q∑

j�−q
Xt−j , q + 1 ≤ t ≤ n− q. (1.5.5)

Since Xt is not observed for t ≤ 0 or t > n, we cannot use (1.5.5) for t ≤ q or
t > n − q. The program ITSM deals with this problem by defining Xt :� X1 for
t < 1 and Xt :� Xn for t > n.

Example 1.5.1 The result of applying the moving-average filter (1.5.5) with q � 2 to the strike data of
Figure 1.6 is shown in Figure 1.18. The estimated noise terms Ŷt � Xt−m̂t are shown
in Figure 1.19. As expected, they show no apparent trend. To apply this filter using
ITSM, open the project STRIKES.TSM, select Smooth>Moving Average, specify
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Figure 1-18
Simple 5-term moving

average m̂t of the strike
data from Figure 1.6.  
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2 for the filter order, and enter the weights 1,1,1 for Theta(0), Theta(1), and Theta(2)
(these are automatically normalized so that the sum of the weights is one). Then click
OK.

It is useful to think of {m̂t} in (1.5.5) as a process obtained from {Xt}by application
of a linear operator or linear filter m̂t �

∑∞
j�−∞ ajXt−j with weights aj � (2q +

1)−1,−q ≤ j ≤ q. This particular filter is a low-pass filter in the sense that it takes the

Figure 1-19
Residuals Ŷt � Xt − m̂t

after subtracting the
5-term moving average

from the strike data
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Figure 1-20
Smoothing with a

low-pass linear filter.

data {Xt} and removes from it the rapidly fluctuating (or high frequency) component
{Ŷt} to leave the slowly varying estimated trend term {m̂t} (see Figure 1.20).

The particular filter (1.5.5) is only one of many that could be used for smoothing.
For large q, provided that (2q + 1)−1

∑q

j�−q Yt−j ≈ 0, it not only will attenuate
noise but at the same time will allow linear trend functions mt � c0 + c1t to pass
without distortion (see Problem 1.11). However, we must beware of choosing q to
be too large, since if mt is not linear, the filtered process, although smooth, will not
be a good estimate of mt . By clever choice of the weights {aj } it is possible (see
Problems 1.12–1.14 and Section 4.3) to design a filter that will not only be effective
in attenuating noise in the data, but that will also allow a larger class of trend functions
(for example all polynomials of degree less than or equal to 3) to pass through without
distortion. The Spencer 15-point moving average is a filter that passes polynomials
of degree 3 without distortion. Its weights are

aj � 0, |j | > 7,

with

aj � a−j , |j | ≤ 7,

and

[a0, a1, . . . , a7] � 1
320

[74, 67, 46, 21, 3,−5,−6,−3]. (1.5.6)

Applied to the process (1.5.2) with mt � c0 + c1t + c2t
2 + c3t

3, it gives

7∑
j�−7

ajXt−j �
7∑

j�−7

ajmt−j +
7∑

j�−7

ajYt−j ≈
7∑

j�−7

ajmt−j � mt,

where the last step depends on the assumed form ofmt (Problem 1.12). Further details
regarding this and other smoothing filters can be found in Kendall and Stuart (1976),
Chapter 46.

(b) Exponential smoothing. For any fixed α ∈ [0, 1], the one-sided moving
averages m̂t , t � 1, . . . , n, defined by the recursions

m̂t � αXt + (1 − α)m̂t−1, t � 2, . . . , n, (1.5.7)

and

m̂1 � X1 (1.5.8)
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can be computed using ITSM by selecting Smooth>Exponential and specifying
the value of α. Application of (1.5.7) and (1.5.8) is often referred to as exponential
smoothing, since the recursions imply that for t ≥ 2, m̂t �

∑t−2
j�0 α(1 − α)jXt−j +

(1 − α)t−1X1, a weighted moving average of Xt,Xt−1, . . ., with weights decreasing
exponentially (except for the last one).

(c) Smoothing by elimination of high-frequency components. The option
Smooth>FFT in the program ITSM allows us to smooth an arbitrary series by elimi-
nation of the high-frequency components of its Fourier series expansion (see Section
4.2). This option was used in Example 1.1.4, where we chose to retain the fraction
f � .035 of the frequency components of the series in order to estimate the underlying
signal. (The choice f � 1 would have left the series unchanged.)

Example 1.5.2 In Figures 1.21 and 1.22 we show the results of smoothing the strike data by ex-
ponential smoothing with parameter α � 0.4 (see (1.5.7)) and by high-frequency
elimination with f � 0.4, i.e., by eliminating a fraction 0.6 of the Fourier compo-
nents at the top of the frequency range. These should be compared with the simple
5-term moving average smoothing shown in Figure 1.18. Experimentation with dif-
ferent smoothing parameters can easily be carried out using the program ITSM. The
exponentially smoothed value of the last observation is frequently used to forecast
the next data value. The program automatically selects an optimal value of α for this
purpose if α is specified as −1 in the exponential smoothing dialog box.

(d) Polynomial fitting. In Section 1.3.2 we showed how a trend of the form
mt � a0 +a1t +a2t

2 can be fitted to the data {x1, . . . , xn} by choosing the parameters

Figure 1-21
Exponentially smoothed
strike data with α � 0.4.  

(t
ho

us
an

ds
)

1950 1960 1970 1980

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0



The Bartlett Press, Inc. brockwel 8 · i · 2002 1:59 p.m. Page 29

1.5 Estimation and Elimination of Trend and Seasonal Components 29

Figure 1-22
Strike data smoothed

by elimination of high
frequencies with f � 0.4.  
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a0, a1, and a2 to minimize the sum of squares,
∑n

t�1(xt −mt)
2 (see Example 1.3.4).

The method of least squares estimation can also be used to estimate higher-order
polynomial trends in the same way. The Regression option of ITSM allows least
squares fitting of polynomial trends of order up to 10 (together with up to four har-
monic terms; see Example 1.3.6). It also allows generalized least squares estimation
(see Section 6.6), in which correlation between the residuals is taken into account.

Method 2: Trend Elimination by Differencing
Instead of attempting to remove the noise by smoothing as in Method 1, we now
attempt to eliminate the trend term by differencing. We define the lag-1 difference
operator ∇ by

∇Xt � Xt −Xt−1 � (1 − B)Xt, (1.5.9)

where B is the backward shift operator,

BXt � Xt−1. (1.5.10)

Powers of the operators B and ∇ are defined in the obvious way, i.e., Bj(Xt) � Xt−j
and ∇j (Xt) � ∇(∇j−1(Xt)), j ≥ 1, with ∇0(Xt) � Xt . Polynomials in B and ∇ are
manipulated in precisely the same way as polynomial functions of real variables. For
example,

∇2Xt � ∇(∇(Xt)) � (1 − B)(1 − B)Xt � (1 − 2B + B2)Xt

� Xt − 2Xt−1 +Xt−2.
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If the operator ∇ is applied to a linear trend functionmt � c0+c1t , then we obtain the
constant function ∇mt � mt −mt−1 � c0 + c1t − (c0 + c1(t − 1)) � c1. In the same
way any polynomial trend of degree k can be reduced to a constant by application of
the operator ∇k (Problem 1.10). For example, ifXt � mt+Yt , wheremt �

∑k

j�0 cj t
j

and Yt is stationary with mean zero, application of ∇k gives

∇kXt � k!ck + ∇kYt ,

a stationary process with mean k!ck. These considerations suggest the possibility,
given any sequence {xt} of data, of applying the operator ∇ repeatedly until we find
a sequence

{∇kxt
}

that can plausibly be modeled as a realization of a stationary
process. It is often found in practice that the order k of differencing required is quite
small, frequently one or two. (This relies on the fact that many functions can be
well approximated, on an interval of finite length, by a polynomial of reasonably low
degree.)

Example 1.5.3 Applying the operator∇ to the population values {xt , t � 1, . . . , 20} of Figure 1.5, we
find that two differencing operations are sufficient to produce a series with no apparent
trend. (To carry out the differencing using ITSM, select Transform>Difference,
enter the value 1 for the differencing lag, and click OK.) This replaces the original
series {xt} by the once-differenced series {xt − xt−1}. Repetition of these steps gives
the twice-differenced series ∇2xt � xt − 2xt−1 + xt−2, plotted in Figure 1.23. Notice
that the magnitude of the fluctuations in∇2xt increases with the value of xt . This effect
can be suppressed by first taking natural logarithms, yt � ln xt , and then applying the
operator ∇2 to the series {yt}. (See also Figures 1.1 and 1.17.)

Figure 1-23
The twice-differenced series
derived from the population

data of Figure 1.5.  
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1.5.2 Estimation and Elimination of Both Trend and Seasonality

The methods described for the estimation and elimination of trend can be adapted in
a natural way to eliminate both trend and seasonality in the general model, specified
as follows.

Classical Decomposition Model

Xt � mt + st + Yt , t � 1, . . . , n, (1.5.11)

where EYt � 0, st+d � st , and
∑d

j�1 sj � 0.

We shall illustrate these methods with reference to the accidental deaths data of
Example 1.1.3, for which the period d of the seasonal component is clearly 12.

Method S1: Estimation of Trend and Seasonal Components
The method we are about to describe is used in the Transform>Classical option
of ITSM.

Suppose we have observations {x1, . . . , xn}. The trend is first estimated by ap-
plying a moving average filter specially chosen to eliminate the seasonal component
and to dampen the noise. If the period d is even, say d � 2q, then we use

m̂t � (0.5xt−q + xt−q+1 + · · · + xt+q−1 + 0.5xt+q)/d, q < t ≤ n− q. (1.5.12)

If the period is odd, say d � 2q + 1, then we use the simple moving average (1.5.5).
The second step is to estimate the seasonal component. For each k � 1, . . . , d, we

compute the averagewk of the deviations {(xk+jd−m̂k+jd), q < k+jd ≤ n−q}. Since
these average deviations do not necessarily sum to zero, we estimate the seasonal
component sk as

ŝk � wk − d−1
d∑
i�1

wi, k � 1, . . . , d, (1.5.13)

and ŝk � ŝk−d, k > d.
The deseasonalized data is then defined to be the original series with the estimated

seasonal component removed, i.e.,

dt � xt − ŝt , t � 1, . . . , n. (1.5.14)

Finally, we reestimate the trend from the deseasonalized data {dt} using one of
the methods already described. The program ITSM allows you to fit a least squares
polynomial trend m̂ to the deseasonalized series. In terms of this reestimated trend
and the estimated seasonal component, the estimated noise series is then given by

Ŷt � xt − m̂t − ŝt , t � 1, . . . , n.
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The reestimation of the trend is done in order to have a parametric form for the trend
that can be extrapolated for the purposes of prediction and simulation.

Example 1.5.4 Figure 1.24 shows the deseasonalized accidental deaths data obtained from ITSM
by reading in the series DEATHS.TSM, selecting Transform>Classical, check-
ing only the box marked Seasonal Fit, entering 12 for the period, and clicking
OK. The estimated seasonal component ŝt , shown in Figure 1.25, is obtained by se-
lecting Transform>Show Classical Fit. (Except for having a mean of zero, this
estimate is very similar to the harmonic regression function with frequencies 2π/12
and 2π/6 displayed in Figure 1.11.) The graph of the deseasonalized data suggests
the presence of an additional quadratic trend function. In order to fit such a trend to
the deseasonalized data, select Transform>Undo Classical to retrieve the original
data and then select Transform>Classical and check the boxes marked Seasonal
Fit and Polynomial Trend, entering 12 for the period and selecting Quadratic
for the trend. Then click OK and you will obtain the trend function

m̂t � 9952 − 71.82t + 0.8260t2, 1 ≤ t ≤ 72.

At this point the data stored in ITSM consists of the estimated noise

Ŷt � xt − m̂t − ŝt , t � 1, . . . , 72,

obtained by subtracting the estimated seasonal and trend components from the original
data.

Figure 1-24
The deseasonalized

accidental deaths
data from ITSM.  
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Figure 1-25
The estimated seasonal

component of the
accidental deaths

data from ITSM.  

(t
ho

us
an

ds
)

1973 1974 1975 1976 1977 1978 1979

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Method S2: Elimination of Trend and Seasonal Components by Differencing
The technique of differencing that we applied earlier to nonseasonal data can be
adapted to deal with seasonality of period d by introducing the lag-d differencing
operator ∇d defined by

∇dXt � Xt −Xt−d � (1 − Bd)Xt . (1.5.15)

(This operator should not be confused with the operator ∇d � (1 − B)d defined
earlier.)

Applying the operator ∇d to the model

Xt � mt + st + Yt ,

where {st} has period d, we obtain

∇dXt � mt −mt−d + Yt − Yt−d,

which gives a decomposition of the difference ∇dXt into a trend component (mt −
mt−d) and a noise term (Yt−Yt−d). The trend,mt−mt−d , can then be eliminated using
the methods already described, in particular by applying a power of the operator ∇.

Example 1.5.5 Figure 1.26 shows the result of applying the operator ∇12 to the accidental deaths
data. The graph is obtained from ITSM by opening DEATHS.TSM, selecting Trans-
form>Difference, entering lag 12, and clicking OK. The seasonal component evident
in Figure 1.3 is absent from the graph of ∇12xt , 13 ≤ t ≤ 72. However, there still
appears to be a nondecreasing trend. If we now apply the operator ∇ to {∇12xt} by
again selecting Transform>Difference, this time with lag one, we obtain the graph
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Figure 1-26
The differenced series
{∇12xt , t � 13, . . . ,72}

derived from the monthly
accidental deaths

{xt , t � 1, . . . ,72}.  
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of ∇∇12xt , 14 ≤ t ≤ 72, shown in Figure 1.27, which has no apparent trend or sea-
sonal component. In Chapter 5 we shall show that this doubly differenced series can
in fact be well represented by a stationary time series model.

In this section we have discussed a variety of methods for estimating and/or
removing trend and seasonality. The particular method chosen for any given data
set will depend on a number of factors including whether or not estimates of the

Figure 1-27
The differenced series

{∇∇12xt , t � 14, . . . ,72}
derived from the monthly

accidental deaths
{xt , t � 1, . . . ,72}.
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components of the series are required and whether or not it appears that the data
contain a seasonal component that does not vary with time. The program ITSM
allows two options under the Transform menu:

1. “classical decomposition,” in which trend and/or seasonal components are esti-
mated and subtracted from the data to generate a noise sequence, and

2. “differencing,” in which trend and/or seasonal components are removed from the
data by repeated differencing at one or more lags in order to generate a noise
sequence.

A third option is to use the Regression menu, possibly after applying a Box–Cox
transformation. Using this option we can (see Example 1.3.6)

3. fit a sum of harmonics and a polynomial trend to generate a noise sequence that
consists of the residuals from the regression.

In the next section we shall examine some techniques for deciding whether or not the
noise sequence so generated differs significantly from iid noise. If the noise sequence
does have sample autocorrelations significantly different from zero, then we can take
advantage of this serial dependence to forecast future noise values in terms of past
values by modeling the noise as a stationary time series.

1.6 Testing the Estimated Noise Sequence

The objective of the data transformations described in Section 1.5 is to produce a
series with no apparent deviations from stationarity, and in particular with no apparent
trend or seasonality. Assuming that this has been done, the next step is to model the
estimated noise sequence (i.e., the residuals obtained either by differencing the data
or by estimating and subtracting the trend and seasonal components). If there is no
dependence among between these residuals, then we can regard them as observations
of independent random variables, and there is no further modeling to be done except to
estimate their mean and variance. However, if there is significant dependence among
the residuals, then we need to look for a more complex stationary time series model
for the noise that accounts for the dependence. This will be to our advantage, since
dependence means in particular that past observations of the noise sequence can assist
in predicting future values.

In this section we examine some simple tests for checking the hypothesis that
the residuals from Section 1.5 are observed values of independent and identically
distributed random variables. If they are, then our work is done. If not, then we must
use the theory of stationary processes to be developed in later chapters to find a more
appropriate model.
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(a) The sample autocorrelation function. For large n, the sample autocorre-
lations of an iid sequence Y1, . . . , Yn with finite variance are approximately iid with
distribution N(0, 1/n) (see TSTM p. 222). Hence, if y1, . . . , yn is a realization of
such an iid sequence, about 95% of the sample autocorrelations should fall between
the bounds ±1.96/

√
n. If we compute the sample autocorrelations up to lag 40 and

find that more than two or three values fall outside the bounds, or that one value falls
far outside the bounds, we therefore reject the iid hypothesis. The bounds ±1.96/

√
n

are automatically plotted when the sample autocorrelation function is computed by
the program ITSM.

(b) The portmanteau test. Instead of checking to see whether each sample
autocorrelation ρ̂(j) falls inside the bounds defined in (a) above, it is also possible
to consider the single statistic

Q � n

h∑
j�1

ρ̂2(j).

If Y1, . . . , Yn is a finite-variance iid sequence, then by the same result used in (a), Q is
approximately distributed as the sum of squares of the independent N(0, 1) random
variables,

√
nρ̂(j), j � 1, . . . , h, i.e., as chi-squared with h degrees of freedom. A

large value ofQ suggests that the sample autocorrelations of the data are too large for
the data to be a sample from an iid sequence. We therefore reject the iid hypothesis
at level α if Q > χ 2

1−α(h), where χ 2
1−α(h) is the 1 − α quantile of the chi-squared

distribution with h degrees of freedom. The program ITSM conducts a refinement of
this test, formulated by Ljung and Box (1978), in which Q is replaced by

QLB � n(n+ 2)
h∑

j�1

ρ̂2(j)/(n− j),

whose distribution is better approximated by the chi-squared distribution with h

degrees of freedom.
Another portmanteau test, formulated by McLeod and Li (1983), can be used as

a further test for the iid hypothesis, since if the data are iid, then the squared data are
also iid. It is based on the same statistic used for the Ljung–Box test, except that the
sample autocorrelations of the data are replaced by the sample autocorrelations of
the squared data, ρ̂WW (h), giving

QML � n(n+ 2)
h∑

k�1

ρ̂2
WW(k)/(n− k).

The hypothesis of iid data is then rejected at level α if the observed value of QML is
larger than the 1 − α quantile of the χ 2(h) distribution.

(c) The turning point test. If y1, . . . , yn is a sequence of observations, we say
that there is a turning point at time i, 1 < i < n, if yi−1 < yi and yi > yi+1 or if
yi−1 > yi and yi < yi+1. If T is the number of turning points of an iid sequence of
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length n, then, since the probability of a turning point at time i is 2
3 , the expected

value of T is

µT � E(T ) � 2(n− 2)/3.

It can also be shown for an iid sequence that the variance of T is

σ 2
T � Var(T ) � (16n− 29)/90.

A large value of T − µT indicates that the series is fluctuating more rapidly than
expected for an iid sequence. On the other hand, a value of T − µT much smaller
than zero indicates a positive correlation between neighboring observations. For an
iid sequence with n large, it can be shown that

T is approximately N
(
µT , σ

2
T

)
.

This means we can carry out a test of the iid hypothesis, rejecting it at level α if
|T − µT |/σT > 41−α/2, where 41−α/2 is the 1 − α/2 quantile of the standard normal
distribution. (A commonly used value of α is .05, for which the corresponding value
of 41−α/2 is 1.96.)

(d) The difference-sign test. For this test we count the number S of values of i
such that yi > yi−1, i � 2, . . . , n, or equivalently the number of times the differenced
series yi − yi−1 is positive. For an iid sequence it is clear that

µS � ES � 1
2
(n− 1).

It can also be shown, under the same assumption, that

σ 2
S � Var(S) � (n+ 1)/12,

and that for large n,

S is approximately N
(
µS, σ

2
S

)
.

A large positive (or negative) value of S−µS indicates the presence of an increasing
(or decreasing) trend in the data. We therefore reject the assumption of no trend in
the data if |S − µS |/σS > 41−α/2.

The difference-sign test must be used with caution. A set of observations exhibit-
ing a strong cyclic component will pass the difference-sign test for randomness, since
roughly half of the observations will be points of increase.

(e) The rank test. The rank test is particularly useful for detecting a linear trend
in the data. Define P to be the number of pairs (i, j) such that yj > yi and j > i,
i � 1, . . . , n− 1. There is a total of

(
n

2

) � 1
2n(n− 1) pairs (i, j) such that j > i. For

an iid sequence {Y1, . . . , Yn}, each event {Yj > Yi} has probability 1
2 , and the mean

of P is therefore

µP � 1
4
n(n− 1).
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It can also be shown for an iid sequence that the variance of P is

σ 2
P � n(n− 1)(2n+ 5)/72

and that for large n,

P is approximately N
(
µP , σ

2
P

)
(see Kendall and Stuart, 1976). A large positive (negative) value of P −µP indicates
the presence of an increasing (decreasing) trend in the data. The assumption that
{yj } is a sample from an iid sequence is therefore rejected at level α � 0.05 if
|P − µP |/σP > 41−α/2 � 1.96.

(f) Fitting an autoregressive model. A further test that can be carried out using
the program ITSM is to fit an autoregressive model to the data using the Yule–Walker
algorithm (discussed in Section 5.1.1) and choosing the order which minimizes the
AICC statistic (see Section 5.5). A selected order equal to zero suggests that the data
is white noise.

(g) Checking for normality. If the noise process is Gaussian, i.e., if all of its
joint distributions are normal, then stronger conclusions can be drawn when a model
is fitted to the data. The following test enables us to check whether it is reasonable
to assume that observations from an iid sequence are also Gaussian.

Let Y(1) < Y(2) < · · · < Y(n) be the order statistics of a random sample Y1, . . . , Yn
from the distribution N(µ, σ 2). If X(1) < X(2) < · · · < X(n) are the order statistics
from a N(0, 1) sample of size n, then

EY(j) � µ+ σmj ,

where mj � EX(j), j � 1, . . . , n. The graph of the points
(
m1, Y(1)), . . . , (mn, Y(n)

)
is called a Gaussian qq plot) and can be displayed in ITSM by clicking on the yellow
button labeled QQ. If the normal assumption is correct, the Gaussian qq plot should be
approximately linear. Consequently, the squared correlation of the points (mi, Y(i)),
i � 1, . . . , n, should be near 1. The assumption of normality is therefore rejected if the
squared correlation R2 is sufficiently small. If we approximate mi by 4−1((i− .5)/n)
(see Mage, 1982 for some alternative approximations), then R2 reduces to

R2 �
(∑n

i�1(Y(i) − Y )4−1
(
i−.5
n

))2∑n

i�1(Y(i) − Y )2
∑n

i�1

(
4−1

(
i−.5
n

))2 ,

where Y � n−1(Y1 +· · ·+Yn). Percentage points for the distribution of R2, assuming
normality of the sample values, are given by Shapiro and Francia (1972) for sample
sizes n < 100. For n � 200, P(R2 < .987) � .05 and P(R2 < .989) � .10. For
larger values of n the Jarque-Bera test for normality can be used (see Section 5.3.3).

Example 1.6.1 If we did not know in advance how the signal plus noise data of Example 1.1.4 were
generated, we might suspect that they came from an iid sequence. We can check this
hypothesis with the aid of the tests (a)–(f) introduced above.
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(a) The sample autocorrelation function (Figure 1.28) is obtained from ITSM by
opening the project SIGNAL.TSM and clicking on the second yellow button at the
top of the ITSM window. Observing that 25% of the autocorrelations are outside the
bounds ±1.96/

√
200, we reject the hypothesis that the series is iid.

The remaining tests (b), (c), (d), (e), and (f) are performed by choosing the option
Statistics>Residual Analysis>Tests of Randomness. (Since no model has
been fitted to the data, the residuals are the same as the data themselves.)

(b) The sample value of the Ljung–Box statistic QLB with h � 20 is 51.84. Since
the corresponding p-value (displayed by ITSM) is .00012 < .05, we reject the iid
hypothesis at level .05. The p-value for the McLeod–Li statistic QML is 0.717. The
McLeod–Li statistic does therefore not provide sufficient evidence to reject the iid
hypothesis at level .05.

(c) The sample value of the turning-point statistic T is 138, and the asymptotic
distribution under the iid hypothesis (with sample sizen � 200) is N(132, 35.3). Thus
|T − µT |/σT � 1.01, corresponding to a computed p-value of .312. On the basis of
the value of T there is therefore not sufficient evidence to reject the iid hypothesis at
level .05.

(d) The sample value of the difference-sign statistic S is 101, and the asymptotic
distribution under the iid hypothesis (with sample size n � 200) is N(99.5, 16.7).
Thus |S−µS |/σS � 0.38, corresponding to a computedp-value of 0.714. On the basis
of the value of S there is therefore not sufficient evidence to reject the iid hypothesis
at level .05.

Figure 1-28
The sample autocorrelation

function for the data of
Example 1.1.4 showing
the bounds ±1.96/

√
n.
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(e) The sample value of the rank statistic P is 10310, and the asymptotic dis-
tribution under the iid hypothesis (with n � 200) is N

(
9950, 2.239 × 105

)
. Thus

|P −µP |/σP � 0.76, corresponding to a computed p-value of 0.447. On the basis of
the value of P there is therefore not sufficient evidence to reject the iid hypothesis at
level .05.

(f) The minimum-AICC Yule–Walker autoregressive model for the data is of
order seven, supporting the evidence provided by the sample ACF and Ljung–Box
tests against the iid hypothesis.

Thus, although not all of the tests detect significant deviation from iid behavior,
the sample autocorrelation, the Ljung–Box statistic, and the fitted autoregression pro-
vide strong evidence against it, causing us to reject it (correctly) in this example.

The general strategy in applying the tests described in this section is to check
them all and to proceed with caution if any of them suggests a serious deviation
from the iid hypothesis. (Remember that as you increase the number of tests, the
probability that at least one rejects the null hypothesis when it is true increases. You
should therefore not necessarily reject the null hypothesis on the basis of one test
result only.)

Problems

1.1. Let X and Y be two random variables with E(Y ) � µ and EY 2 < ∞.

a. Show that the constant c that minimizes E(Y − c)2 is c � µ.

b. Deduce that the random variable f (X) that minimizes E
[
(Y −f (X))2|X] is

f (X) � E[Y |X].

c. Deduce that the random variable f (X) that minimizes E(Y −f (X))2 is also

f (X) � E[Y |X].

1.2. (Generalization of Problem 1.1.) Suppose that X1, X2, . . . is a sequence of ran-
dom variables with E(X2

t ) < ∞ and E(Xt) � µ.

a. Show that the random variable f (X1, . . . , Xn) that minimizes E
[
(Xn+1 −

f (X1, . . . , Xn))
2|X1, . . . , Xn

]
is

f (X1, . . . , Xn) � E[Xn+1|X1, . . . , Xn].

b. Deduce that the random variable f (X1, . . . , Xn) that minimizes E
[
(Xn+1 −

f (X1, . . . , Xn))
2
]

is also

f (X1, . . . , Xn) � E[Xn+1|X1, . . . , Xn].

c. If X1, X2, . . . is iid with E(X2
i ) < ∞ and EXi � µ, where µ is known, what

is the minimum mean squared error predictor ofXn+1 in terms ofX1, . . . , Xn?
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d. Under the conditions of part (c) show that the best linear unbiased estimator
of µ in terms of X1, . . . , Xn is X̄ � 1

n
(X1 + · · · + Xn). (µ̂ said to be an

unbiased estimator of µ if Eµ̂ � µ for all µ.)

e. Under the conditions of part (c) show that X̄ is the best linear predictor of
Xn+1 that is unbiased for µ.

f. If X1, X2, . . . is iid with E
(
X2

i

)
< ∞ and EXi � µ, and if S0 � 0, Sn �

X1 + · · · + Xn, n � 1, 2, . . ., what is the minimum mean squared error
predictor of Sn+1 in terms of S1, . . . , Sn?

1.3. Show that a strictly stationary process with E(X2
i ) < ∞ is weakly stationary.

1.4. Let {Zt} be a sequence of independent normal random variables, each with
mean 0 and variance σ 2, and let a, b, and c be constants. Which, if any, of
the following processes are stationary? For each stationary process specify the
mean and autocovariance function.

a. Xt � a + bZt + cZt−2

b. Xt � Z1 cos(ct)+ Z2 sin(ct)

c. Xt � Zt cos(ct)+ Zt−1 sin(ct)

d. Xt � a + bZ0

e. Xt � Z0 cos(ct)

f. Xt � ZtZt−1

1.5. Let {Xt} be the moving-average process of order 2 given by

Xt � Zt + θZt−2,

where {Zt} is WN(0, 1).

a. Find the autocovariance and autocorrelation functions for this process when
θ � .8.

b. Compute the variance of the sample mean (X1 + X2 + X3 + X4)/4 when
θ � .8.

c. Repeat (b) when θ � −.8 and compare your answer with the result obtained
in (b).

1.6. Let {Xt} be the AR(1) process defined in Example 1.4.5.

a. Compute the variance of the sample mean (X1 + X2 + X3 + X4)/4 when
φ � .9 and σ 2 � 1.

b. Repeat (a) when φ � −.9 and compare your answer with the result obtained
in (a).

1.7. If {Xt} and {Yt} are uncorrelated stationary sequences, i.e., if Xr and Ys are
uncorrelated for every r and s, show that {Xt + Yt} is stationary with autoco-
variance function equal to the sum of the autocovariance functions of {Xt} and
{Yt}.
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1.8. Let {Zt} be IID N(0, 1) noise and define

Xt �
{
Zt, if t is even,

(Z2
t−1 − 1)/

√
2, if t is odd.

a. Show that {Xt} is WN(0, 1) but not iid(0, 1) noise.

b. Find E(Xn+1|X1, . . . , Xn) for n odd and n even and compare the results.

1.9. Let {x1, . . . , xn} be observed values of a time series at times 1, . . . , n, and let
ρ̂(h) be the sample ACF at lag h as in Definition 1.4.4.

a. If xt � a + bt , where a and b are constants and b �� 0, show that for each
fixed h ≥ 1,

ρ̂(h) → 1 as n → ∞.

b. If xt � c cos(ωt), where c and ω are constants (c �� 0 and ω ∈ (−π, π]),
show that for each fixed h,

ρ̂(h) → cos(ωh) as n → ∞.

1.10. If mt �
∑p

k�0 ckt
k, t � 0,±1, . . . , show that ∇mt is a polynomial of degree

p − 1 in t and hence that ∇p+1mt � 0.

1.11. Consider the simple moving-average filter with weights aj � (2q+1)−1, −q ≤
j ≤ q.

a. If mt � c0 + c1t , show that
∑q

j�−q ajmt−j � mt .

b. IfZt, t � 0,±1,±2, . . . , are independent random variables with mean 0 and
variance σ 2, show that the moving average At �

∑q

j�−q ajZt−j is “small”
for large q in the sense that EAt � 0 and Var(At) � σ 2/(2q + 1).

1.12. a. Show that a linear filter {aj } passes an arbitrary polynomial of degree k

without distortion, i.e., that

mt �
∑
j

ajmt−j

for all kth-degree polynomials mt � c0 + c1t + · · · + ckt
k, if and only if

∑
j

aj � 1 and

∑
j

j raj � 0, for r � 1, . . . , k.

b. Deduce that the Spencer 15-point moving-average filter {aj } defined by
(1.5.6) passes arbitrary third-degree polynomial trends without distortion.
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1.13. Find a filter of the form 1 + αB + βB2 + γB3 (i.e., find α, β, and γ ) that
passes linear trends without distortion and that eliminates arbitrary seasonal
components of period 2.

1.14. Show that the filter with coefficients [a−2, a−1, a0, a1, a2] � 1
9 [−1, 4, 3, 4,−1]

passes third-degree polynomials and eliminates seasonal components with pe-
riod 3.

1.15. Let {Yt} be a stationary process with mean zero and let a and b be constants.

a. If Xt � a + bt + st + Yt , where st is a seasonal component with period
12, show that ∇∇12Xt � (1 − B)(1 − B12)Xt is stationary and express its
autocovariance function in terms of that of {Yt}.

b. If Xt � (a + bt)st + Yt , where st is a seasonal component with period 12,
show that ∇2

12Xt � (1−B12)2Xt is stationary and express its autocovariance
function in terms of that of {Yt}.

1.16. (Using ITSM to smooth the strikes data.) Double-click on the ITSM icon, select
File>Project>Open>Univariate, click OK, and open the file STRIKES.
TSM. The graph of the data will then appear on your screen. To smooth the
data select Smooth>Moving Ave, Smooth>Exponential, or Smooth>FFT. Try
using each of these to reproduce the results shown in Figures 1.18, 1.21, and
1.22.

1.17. (Using ITSM to plot the deaths data.) In ITSM select File>Project>Open>
Univariate, click OK, and open the project DEATHS.TSM. The graph of
the data will then appear on your screen. To see a histogram of the data, click
on the sixth yellow button at the top of the ITSM window. To see the sample
autocorrelation function, click on the second yellow button. The presence of a
strong seasonal component with period 12 is evident in the graph of the data
and in the sample autocorrelation function.

1.18. (Using ITSM to analyze the deaths data.) Open the file DEATHS.TSM, select
Transform>Classical, check the box marked Seasonal Fit, and enter 12
for the period. Make sure that the box labeled Polynomial Fit is not checked,
and click, OK. You will then see the graph (Figure 1.24) of the deseasonalized
data. This graph suggests the presence of an additional quadratic trend function.
To fit such a trend to the deseasonalized data, select Transform>Undo Clas-
sical to retrieve the original data. Then select Transform>Classical and
check the boxes marked Seasonal Fit and Polynomial Trend, entering 12
for the period and Quadratic for the trend. Click OK and you will obtain the
trend function

m̂t � 9952 − 71.82t + 0.8260t2, 1 ≤ t ≤ 72.
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At this point the data stored in ITSM consists of the estimated noise

Ŷt � xt − m̂t − ŝt , t � 1, . . . , 72,

obtained by subtracting the estimated seasonal and trend components from the
original data. The sample autocorrelation function can be plotted by clicking
on the second yellow button at the top of the ITSM window. Further tests for
dependence can be carried out by selecting the options Statistics>Residual
Analysis>Tests of Randomness. It is clear from these that there is substan-
tial dependence in the series {Yt}.

To forecast the data without allowing for this dependence, select the option Fore-
casting>ARMA. Specify 24 for the number of values to be forecast, and the program
will compute forecasts based on the assumption that the estimated seasonal and trend
components are true values and that {Yt} is a white noise sequence with zero mean.
(This is the default model assumed by ITSM until a more complicated stationary
model is estimated or specified.) The original data are plotted with the forecasts
appended.

Later we shall see how to improve on these forecasts by taking into account the
dependence in the series {Yt}.
1.19. Use a text editor, e.g., WORDPAD or NOTEPAD, to construct and save a

text file named TEST.TSM, which consists of a single column of 30 numbers,
{x1, . . . , x30}, defined by

x1, . . . , x10 : 486, 474, 434, 441, 435, 401, 414, 414, 386, 405;
x11, . . . , x20 : 411, 389, 414, 426, 410, 441, 459, 449, 486, 510;
x21, . . . , x30 : 506, 549, 579, 581, 630, 666, 674, 729, 771, 785.

This series is in fact the sum of a quadratic trend and a period-three seasonal
component. Use the program ITSM to apply the filter in Problem 1.14 to this
time series and discuss the results.

(Once the data have been typed, they can be imported directly into ITSM by
coping and pasting to the clipboard, and then in ITSM selecting File>Project>New>
Univariate, clicking on OK and selecting File>Import Clipboard.)
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2.1 Basic Properties
2.2 Linear Processes
2.3 Introduction to ARMA Processes
2.4 Properties of the Sample Mean and Autocorrelation Function
2.5 Forecasting Stationary Time Series
2.6 The Wold Decomposition

A key role in time series analysis is played by processes whose properties, or some
of them, do not vary with time. If we wish to make predictions, then clearly we
must assume that something does not vary with time. In extrapolating deterministic
functions it is common practice to assume that either the function itself or one of its
derivatives is constant. The assumption of a constant first derivative leads to linear
extrapolation as a means of prediction. In time series analysis our goal is to predict
a series that typically is not deterministic but contains a random component. If this
random component is stationary, in the sense of Definition 1.4.2, then we can develop
powerful techniques to forecast its future values. These techniques will be developed
and discussed in this and subsequent chapters.

2.1 Basic Properties

In Section 1.4 we introduced the concept of stationarity and defined the autocovari-
ance function (ACVF) of a stationary time series {Xt} as

γ (h) � Cov(Xt+h, Xt), h � 0,±1,±2, . . . .
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The autocorrelation function (ACF) of {Xt} was defined similarly as the function ρ(·)
whose value at lag h is

ρ(h) � γ (h)

γ (0)
.

The ACVF and ACF provide a useful measure of the degree of dependence among
the values of a time series at different times and for this reason play an important
role when we consider the prediction of future values of the series in terms of the
past and present values. They can be estimated from observations of X1, . . . , Xn by
computing the sample ACVF and ACF as described in Section 1.4.1.

The role of the autocorrelation function in prediction is illustrated by the fol-
lowing simple example. Suppose that {Xt} is a stationary Gaussian time series (see
Definition A.3.2) and that we have observed Xn. We would like to find the function
of Xn that gives us the best predictor of Xn+h, the value of the series after another h
time units have elapsed. To define the problem we must first say what we mean by
“best.” A natural and computationally convenient definition is to specify our required
predictor to be the function of Xn with minimum mean squared error. In this illus-
tration, and indeed throughout the remainder of this book, we shall use this as our
criterion for “best.” Now by Proposition A.3.1 the conditional distribution of Xn+h
given that Xn � xn is

N
(
µ+ ρ(h)(xn − µ), σ 2

(
1 − ρ(h)2

))
,

where µ and σ 2 are the mean and variance of {Xt}. It was shown in Problem 1.1 that
the value of the constant c that minimizes E(Xn+h − c)2 is c � E(Xn+h) and that the
function m of Xn that minimizes E(Xn+h −m(Xn))

2 is the conditional mean

m(Xn) � E(Xn+h|Xn) � µ+ ρ(h)(Xn − µ). (2.1.1)

The corresponding mean squared error is

E(Xn+h −m(Xn))
2 � σ 2

(
1 − ρ(h)2

)
. (2.1.2)

This calculation shows that at least for stationary Gaussian time series, prediction of
Xn+h in terms of Xn is more accurate as |ρ(h)| becomes closer to 1, and in the limit
as ρ → ±1 the best predictor approaches µ± (Xn −µ) and the corresponding mean
squared error approaches 0.

In the preceding calculation the assumption of joint normality of Xn+h and Xn

played a crucial role. For time series with nonnormal joint distributions the corre-
sponding calculations are in general much more complicated. However, if instead of
looking for the best function of Xn for predicting Xn+h, we look for the best linear
predictor, i.e., the best predictor of the form 8(Xn) � aXn + b, then our problem
becomes that of finding a and b to minimize E(Xn+h − aXn − b)2. An elementary
calculation (Problem 2.1), shows that the best predictor of this form is

8(Xn) � µ+ ρ(h)(Xn − µ) (2.1.3)
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with corresponding mean squared error

E(Xn+h − 8(Xn))
2 � σ 2(1 − ρ(h)2). (2.1.4)

Comparison with (2.1.1) and (2.1.3) shows that for Gaussian processes, 8(Xn) and
m(Xn) are the same. In general, of course, m(Xn) will give smaller mean squared
error than 8(Xn), since it is the best of a larger class of predictors (see Problem 1.8).
However, the fact that the best linear predictor depends only on the mean and ACF of
the series {Xt}means that it can be calculated without more detailed knowledge of the
joint distributions. This is extremely important in practice because of the difficulty
of estimating all of the joint distributions and because of the difficulty of computing
the required conditional expectations even if the distributions were known.

As we shall see later in this chapter, similar conclusions apply when we consider
the more general problem of predicting Xn+h as a function not only of Xn, but also of
Xn−1, Xn−2, . . . . Before pursuing this question we need to examine in more detail the
properties of the autocovariance and autocorrelation functions of a stationary time
series.

Basic Properties of γ(·):
γ (0) ≥ 0,

|γ (h)| ≤ γ (0) for all h,

and γ (·) is even, i.e.,

γ (h) � γ (−h) for all h.

Proof The first property is simply the statement that Var(Xt) ≥ 0, the second is an immediate
consequence of the fact that correlations are less than or equal to 1 in absolute value
(or the Cauchy–Schwarz inequality), and the third is established by observing that

γ (h) � Cov(Xt+h, Xt) � Cov(Xt ,Xt+h) � γ (−h).

Autocovariance functions have another fundamental property, namely that of
nonnegative definiteness.

Definition 2.1.1 A real-valued function κ defined on the integers is nonnegative definite if

n∑
i,j�1

aiκ(i − j)aj ≥ 0 (2.1.5)

for all positive integers n and vectors a � (a1, . . . , an)
′ with real-valued compo-

nents ai .
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Theorem 2.1.1 A real-valued function defined on the integers is the autocovariance function of a
stationary time series if and only if it is even and nonnegative definite.

Proof To show that the autocovariance function γ (·) of any stationary time series {Xt} is
nonnegative definite, let a be any n× 1 vector with real components a1, . . . , an and
let Xn � (Xn, . . . , X1)

′. Then by equation (A.2.5) and the nonnegativity of variances,

Var(a′Xn) � a′na �
n∑

i,j�1

aiγ (i − j)aj ≥ 0,

where n is the covariance matrix of the random vector Xn. The last inequality,
however, is precisely the statement that γ (·) is nonnegative definite. The converse
result, that there exists a stationary time series with autocovariance function κ if κ is
even, real-valued, and nonnegative definite, is more difficult to establish (see TSTM,
Theorem 1.5.1 for a proof). A slightly stronger statement can be made, namely, that
under the specified conditions there exists a stationary Gaussian time series {Xt} with
mean 0 and autocovariance function κ(·).

Remark 1. An autocorrelation function ρ(·) has all the properties of an autocovari-
ance function and satisfies the additional condition ρ(0) � 1. In particular, we can
say that ρ(·) is the autocorrelation function of a stationary process if and only if ρ(·)
is an ACVF with ρ(0) � 1.

Remark 2. To verify that a given function is nonnegative definite it is often simpler
to find a stationary process that has the given function as its ACVF than to verify the
conditions (2.1.5) directly. For example, the function κ(h) �cos(ωh) is nonnegative
definite, since (see Problem 2.2) it is the ACVF of the stationary process

Xt � A cos(ωt)+ B sin(ωt),

where A and B are uncorrelated random variables, both with mean 0 and variance 1.
Another illustration is provided by the following example.

Example 2.1.1 We shall show now that the function defined on the integers by

κ(h) �


1, if h � 0,

ρ, if h � ±1,

0, otherwise,

is the ACVF of a stationary time series if and only if |ρ| ≤ 1
2 . Inspection of the ACVF

of the MA(1) process of Example 1.4.4 shows that κ is the ACVF of such a process
if we can find real θ and nonnegative σ 2 such that

σ 2(1 + θ 2) � 1
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and

σ 2θ � ρ.

If |ρ| ≤ 1
2 , these equations give solutions θ � (2ρ)−1

(
1 ±

√
1 − 4ρ2

)
and σ 2 �(

1 + θ 2
)−1

. However, if |ρ| > 1
2 , there is no real solution for θ and hence no MA(1)

process with ACVF κ . To show that there is no stationary process with ACVF κ ,
we need to show that κ is not nonnegative definite. We shall do this directly from
the definition (2.1.5). First, if ρ > 1

2 , K � [κ(i − j)]ni,j�1, and a is the n-component
vector a � (1,−1, 1,−1, . . .)′, then

a′Ka � n− 2(n− 1)ρ < 0 for n > 2ρ/(2ρ − 1),

showing that κ(·) is not nonnegative definite and therefore, by Theorem 2.1.1, is not
an autocovariance function. If ρ < − 1

2 , the same argument with a � (1, 1, 1, 1, . . .)′

again shows that κ(·) is not nonnegative definite.
If {Xt} is a (weakly) stationary time series, then the vector (X1, . . . , Xn)

′ and the
time-shifted vector (X1+h, . . . , Xn+h)′ have the same mean vectors and covariance
matrices for every integer h and positive integer n. A strictly stationary sequence is
one in which the joint distributions of these two vectors (and not just the means and
covariances) are the same. The precise definition is given below.

Definition 2.1.2 {Xt} is a strictly stationary time series if

(X1, . . . , Xn)
′ d� (X1+h, . . . , Xn+h)′

for all all integers h and n ≥ 1. (Here
d� is used to indicate that the two random

vectors have the same joint distribution function.)

For reference, we record some of the elementary properties of strictly stationary
time series.

Properties of a Strictly Stationary Time Series {Xt}:
a. The random variables Xt are identically distributed.

b. (Xt ,Xt+h)′
d� (X1, X1+h)′ for all integers t and h.

c. {Xt} is weakly stationary if E(X2
t ) < ∞ for all t .

d. Weak stationarity does not imply strict stationarity.

e. An iid sequence is strictly stationary.

Proof Properties (a) and (b) follow at once from Definition 2.1.2. If EX2
t < ∞, then by (a)

and (b) EXt is independent of t and Cov(Xt ,Xt+h) � Cov(X1, X1+h), which is also
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independent of t , proving (c). For (d) see Problem 1.8. If {Xt} is an iid sequence of
random variables with common distribution function F , then the joint distribution
function of (X1+h, . . . , Xn+h)′ evaluated at (x1, . . . , xn)

′ is F(x1) · · ·F(xn), which is
independent of h.

One of the simplest ways to construct a time series {Xt} that is strictly stationary
(and hence stationary if EX2

t < ∞) is to “filter” an iid sequence of random variables.
Let {Zt} be an iid sequence, which by (e) is strictly stationary, and define

Xt � g(Zt , Zt−1, . . . , Zt−q) (2.1.6)

for some real-valued function g(·, . . . , ·). Then {Xt} is strictly stationary, since

(Zt+h, . . . , Zt+h−q)′
d� (Zt , . . . , Zt−q)′ for all integers h. It follows also from the

defining equation (2.1.6) that {Xt} is q-dependent, i.e., that Xs and Xt are inde-
pendent whenever |t − s| > q. (An iid sequence is 0-dependent.) In the same way,
adopting a second-order viewpoint, we say that a stationary time series is q-correlated
if γ (h) � 0 whenever |h| > q. A white noise sequence is then 0-correlated, while
the MA(1) process of Example 1.4.4 is 1-correlated. The moving-average process of
order q defined below is q-correlated, and perhaps surprisingly, the converse is also
true (Proposition 2.1.1).

The MA(q) Process:

{Xt} is a moving-average process of order q if

Xt � Zt + θ1Zt−1 + · · · + θqZt−q, (2.1.7)

where {Zt} ∼ WN
(
0, σ 2

)
and θ1, . . . , θq are constants.

It is a simple matter to check that (2.1.7) defines a stationary time series that is strictly
stationary if {Zt} is iid noise. In the latter case, (2.1.7) is a special case of (2.1.6) with
g a linear function.

The importance of MA(q) processes derives from the fact that every q-correlated
process is an MA(q) process. This is the content of the following proposition, whose
proof can be found in TSTM, Section 3.2. The extension of this result to the case
q � ∞ is essentially Wold’s decomposition (see Section 2.6).

Proposition 2.1.1 If {Xt} is a stationary q-correlated time series with mean 0, then it can be represented
as the MA(q) process in (2.1.7).
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2.2 Linear Processes

The class of linear time series models, which includes the class of autoregressive
moving-average (ARMA) models, provides a general framework for studying sta-
tionary processes. In fact, every second-order stationary process is either a linear
process or can be transformed to a linear process by subtracting a deterministic com-
ponent. This result is known as Wold’s decomposition and is discussed in Section 2.6.

Definition 2.2.1 The time series {Xt} is a linear process if it has the representation

Xt �
∞∑

j�−∞
ψjZt−j , (2.2.1)

for all t , where {Zt} ∼ WN
(
0, σ 2

)
and {ψj } is a sequence of constants with∑∞

j�−∞ |ψj | < ∞.

In terms of the backward shift operator B, (2.2.1) can be written more compactly as

Xt � ψ(B)Zt, (2.2.2)

whereψ(B) � ∑∞
j�−∞ ψjB

j . A linear process is called a moving average or MA(∞)

if ψj � 0 for all j < 0, i.e., if

Xt �
∞∑
j�0

ψjZt−j .

Remark 1. The condition
∑∞

j�−∞ |ψj | < ∞ ensures that the infinite sum in (2.2.1)
converges (with probability one), since E|Zt | ≤ σ and

E|Xt | ≤
∞∑

j�−∞

(|ψj |E|Zt−j |
) ≤ ( ∞∑

j�−∞
|ψj |

)
σ < ∞.

It also ensures that
∑∞

j�−∞ ψ2
j < ∞ and hence (see Appendix C, Example C.1.1) that

the series in (2.2.1) converges in mean square, i.e., that Xt is the mean square limit
of the partial sums

∑n

j�−n ψjZt−j . The condition
∑n

j�−n |ψj | < ∞ also ensures con-
vergence in both senses of the more general series (2.2.3) considered in Proposition
2.2.1 below. In Section 10.5 we consider a more general class of linear processes, the
fractionally integrated ARMA processes, for which the coefficents are not absolutely
summable but only square summable.

The operator ψ(B) can be thought of as a linear filter, which when applied to
the white noise “input” series {Zt} produces the “output” {Xt} (see Section 4.3). As
established in the following proposition, a linear filter, when applied to any stationary
input series, produces a stationary output series.
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Proposition 2.2.1 Let {Yt} be a stationary time series with mean 0 and covariance function γY . If∑∞
j�−∞ |ψj | < ∞, then the time series

Xt �
∞∑

j�−∞
ψjYt−j � ψ(B)Yt (2.2.3)

is stationary with mean 0 and autocovariance function

γX(h) �
∞∑

j�−∞

∞∑
k�−∞

ψjψkγY (h+ k − j). (2.2.4)

In the special case where {Xt} is a linear process,

γX(h) �
∞∑

j�−∞
ψjψj+hσ 2. (2.2.5)

Proof The argument used in Remark 1, with σ replaced by
√
γY (0), shows that the series in

(2.2.3) is convergent. Since EYt � 0, we have

E(Xt) � E

( ∞∑
j�−∞

ψjYt−j

)
�

∞∑
j�−∞

ψjE(Yt−j ) � 0

and

E(Xt+hXt) � E

[( ∞∑
j�−∞

ψjYt+h−j

)( ∞∑
k�−∞

ψkYt−k

)]

�
∞∑

j�−∞

∞∑
k�−∞

ψjψkE(Yt+h−jYt−k)

�
∞∑

j�−∞

∞∑
k�−∞

ψjψkγY (h− j + k),

which shows that {Xt} is stationary with covariance function (2.2.4). (The interchange
of summation and expectation operations in the above calculations can be justified
by the absolute summability of ψj .) Finally, if {Yt} is the white noise sequence {Zt}
in (2.2.1), then γY (h− j + k) � σ 2 if k � j − h and 0 otherwise, from which (2.2.5)
follows.

Remark 2. The absolute convergence of (2.2.3) implies (Problem 2.6) that filters of
the form α(B) � ∑∞

j�−∞ αjB
j and β(B) � ∑∞

j�−∞ βjB
j with absolutely summable

coefficients can be applied successively to a stationary series {Yt} to generate a new
stationary series

Wt �
∞∑

j�−∞
ψjYt−j ,
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where

ψj �
∞∑

k�−∞
αkβj−k �

∞∑
k�−∞

βkαj−k. (2.2.6)

These relations can be expressed in the equivalent form

Wt � ψ(B)Yt ,

where

ψ(B) � α(B)β(B) � β(B)α(B), (2.2.7)

and the products are defined by (2.2.6) or equivalently by multiplying the series∑∞
j�−∞ αjB

j and
∑∞

j�−∞ βjB
j term by term and collecting powers of B. It is clear

from (2.2.6) and (2.2.7) that the order of application of the filters α(B) and β(B) is
immaterial.

Example 2.2.1 An AR(1) process

In Example 1.4.5, an AR(1) process was defined as a stationary solution {Xt} of the
equations

Xt − φXt−1 � Zt, (2.2.8)

where {Zt} ∼ WN(0, σ 2), |φ| < 1, and Zt is uncorrelated with Xs for each s < t . To
show that such a solution exists and is the unique stationary solution of (2.2.8), we
consider the linear process defined by

Xt �
∞∑
j�0

φjZt−j . (2.2.9)

(The coefficients φj for j ≥ 0 are absolutely summable, since |φ| < 1.) It is easy
to verify directly that the process (2.2.9) is a solution of (2.2.8), and by Proposition
2.2.1 it is also stationary with mean 0 and ACVF

γX(h) �
∞∑
j�0

φjφj+hσ 2 � σ 2φh

1 − φ2
,

for h ≥ 0.
To show that (2.2.9) is the only stationary solution of (2.2.8) let {Yt} be any

stationary solution. Then, iterating (2.2.8), we obtain

Yt � φYt−1 + Zt

� Zt + φZt−1 + φ2Yt−2

� · · ·
� Zt + φZt−1 + · · · + φkZt−k + φk+1Yt−k−1.
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If {Yt} is stationary, then EY 2
t is finite and independent of t , so that

E(Yt −
k∑

j�0

φjZt−j )2 � φ2k+2E(Yt−k−1)
2

→ 0 as k → ∞.

This implies that Yt is equal to the mean square limit
∑∞

j�0 φ
jZt−j and hence that the

process defined by (2.2.9) is the unique stationary solution of the equations (2.2.8).
It the case |φ| > 1, the series in (2.2.9) does not converge. However, we can

rewrite (2.2.8) in the form

Xt � −φ−1Zt+1 + φ−1Xt+1. (2.2.10)

Iterating (2.2.10) gives

Xt � −φ−1Zt+1 − φ−2Zt+2 + φ−2Xt+2

� · · ·
� −φ−1Zt+1 − · · · − φ−k−1Zt+k+1 + φ−k−1Xt+k+1,

which shows, by the same arguments used above, that

Xt � −
∞∑
j�1

φ−jZt+j (2.2.11)

is the unique stationary solution of (2.2.8). This solution should not be confused with
the nonstationary solution {Xt} of (2.2.8) obtained when X0 is any specified random
variable that is uncorrelated with {Zt}.

The solution (2.2.11) is frequently regarded as unnatural, since Xt as defined by
(2.2.11) is correlated with future values of Zs , contrasting with the solution (2.2.9),
which has the property that Xt is uncorrelated with Zs for all s > t . It is customary
therefore in modeling stationary time series to restrict attention to AR(1) processes
with |φ| < 1. Then Xt has the representation (2.2.8) in terms of {Zs, s ≤ t}, and we
say that {Xt} is a causal or future-independent function of {Zt}, or more concisely
that {Xt} is a causal autoregressive process. It should be noted that every AR(1)
process with |φ| > 1 can be reexpressed as an AR(1) process with |φ| < 1 and a new
white noise sequence (Problem 3.8). From a second-order point of view, therefore,
nothing is lost by eliminating AR(1) processes with |φ| > 1 from consideration.

If φ � ±1, there is no stationary solution of (2.2.8) (see Problem 2.8).

Remark 3. It is worth remarking that when |φ| < 1 the unique stationary solution
(2.2.9) can be found immediately with the aid of (2.2.7). To do this let φ(B) � 1−φB

and π(B) � ∑∞
j�0 φ

jBj . Then

ψ(B) :� φ(B)π(B) � 1.
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Applying the operator π(B) to both sides of (2.2.8), we obtain

Xt � π(B)Zt �
∞∑
j�0

φjZt−j

as claimed.

2.3 Introduction to ARMA Processes

In this section we introduce, through an example, some of the key properties of an
important class of linear processes known as ARMA (autoregressive moving average)
processes. These are defined by linear difference equations with constant coefficients.
As our example we shall consider the ARMA(1,1) process. Higher-order ARMA
processes will be discussed in Chapter 3.

Definition 2.3.1 The time series {Xt} is an ARMA(1, 1) process if it is stationary and satisfies (for
every t)

Xt − φXt−1 � Zt + θZt−1, (2.3.1)

where {Zt} ∼ WN
(
0, σ 2

)
and φ + θ �� 0.

Using the backward shift operator B, (2.3.1) can be written more concisely as

φ(B)Xt � θ(B)Zt , (2.3.2)

where φ(B) and θ(B) are the linear filters

φ(B) � 1 − φB and θ(B) � 1 + θB,

respectively.
We first investigate the range of values of φ and θ for which a stationary solution

of (2.3.1) exists. If |φ| < 1, let χ(z) denote the power series expansion of 1/φ(z),
i.e.,

∑∞
j�0 φ

jzj , which has absolutely summable coefficients. Then from (2.2.7) we
conclude that χ(B)φ(B) � 1. Applying χ(B) to each side of (2.3.2) therefore gives

Xt � χ(B)θ(B)Zt � ψ(B)Zt,

where

ψ(B) �
∞∑
j�0

ψjB
j � (

1 + φB + φ2B2 + · · ·) (1 + θB) .

By multiplying out the right-hand side or using (2.2.6), we find that

ψ0 � 1 and ψj � (φ + θ)φj−1 for j ≥ 1.
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As in Example 2.2.1, we conclude that the MA(∞) process

Xt � Zt + (φ + θ)

∞∑
j�1

φj−1Zt−j (2.3.3)

is the unique stationary solution of (2.3.1).
Now suppose that |φ| > 1. We first represent 1/φ(z) as a series of powers of zwith

absolutely summable coefficients by expanding in powers of z−1, giving (Problem
2.7)

1
φ(z)

� −
∞∑
j�1

φ−j z−j .

Then we can apply the same argument as in the case where |φ| < 1 to obtain the
unique stationary solution of (2.3.1). We let χ(B) � −∑∞

j�1 φ
−jB−j and apply χ(B)

to each side of (2.3.2) to obtain

Xt � χ(B)θ(B)Zt � −θφ−1Zt − (θ + φ)

∞∑
j�1

φ−j−1Zt+j . (2.3.4)

If φ � ±1, there is no stationary solution of (2.3.1). Consequently, there is no
such thing as an ARMA(1,1) process with φ � ±1 according to our definition.

We can now summarize our findings about the existence and nature of the sta-
tionary solutions of the ARMA(1,1) recursions (2.3.2) as follows:

• A stationary solution of the ARMA(1,1) equations exists if and only if φ �� ±1.

• If |φ| < 1, then the unique stationary solution is given by (2.3.3). In this case we
say that {Xt} is causal or a causal function of {Zt}, since Xt can be expressed in
terms of the current and past values Zs , s ≤ t .

• If |φ| > 1, then the unique stationary solution is given by (2.3.4). The solution is
noncausal, since Xt is then a function of Zs , s ≥ t .

Just as causality means that Xt is expressible in terms of Zs, s ≤ t , the dual con-
cept of invertibility means that Zt is expressible in terms of Xs, s ≤ t . We show now
that the ARMA(1,1) process defined by (2.3.1) is invertible if |θ | < 1. To demon-
strate this, let ξ(z) denote the power series expansion of 1/θ(z), i.e.,

∑∞
j�0(−θ)j zj ,

which has absolutely summable coefficients. From (2.2.7) it therefore follows that
ξ(B)θ(B) � 1, and applying ξ(B) to each side of (2.3.2) gives

Zt � ξ(B)φ(B)Xt � π(B)Xt,

where

π(B) �
∞∑
j�0

πjB
j � (

1 − θB + (−θ)2B2 + · · ·) (1 − φB) .
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By multiplying out the right-hand side or using (2.2.6), we find that

Zt � Xt − (φ + θ)

∞∑
j�1

(−θ)j−1Xt−j . (2.3.5)

Thus the ARMA(1,1) process is invertible, since Zt can be expressed in terms of the
present and past values of the process Xs, s ≤ t . An argument like the one used to
show noncausality when |φ| > 1 shows that the ARMA(1,1) process is noninvertible
when |θ | > 1, since then

Zt � −φθ−1Xt + (θ + φ)

∞∑
j�1

(−θ)−j−1Xt+j . (2.3.6)

We summarize these results as follows:

• If |θ | < 1, then the ARMA(1,1) process is invertible, andZt is expressed in terms
of Xs, s ≤ t , by (2.3.5).

• If |θ | > 1, then the ARMA(1,1) process is noninvertible, and Zt is expressed in
terms of Xs, s ≥ t , by (2.3.6).

Remark 1. In the cases θ � ±1, the ARMA(1,1) process is invertible in the more
general sense thatZt is a mean square limit of finite linear combinations of Xs, s ≤ t ,
although it cannot be expressed explicitly as an infinite linear combination ofXs, s ≤
t (see Section 4.4 of TSTM). In this book the term invertible will always be used in
the more restricted sense that Zt �

∑∞
j�0 πjXt−j , where

∑∞
j�0 |πj | < ∞.

Remark 2. If the ARMA(1,1) process {Xt} is noncausal or noninvertible with
|θ | > 1, then it is possible to find a new white noise sequence {Wt} such that {Xt}
is a causal and noninvertible ARMA(1,1) process relative to {Wt} (Problem 4.10).
Therefore, from a second-order point of view, nothing is lost by restricting attention to
causal and invertible ARMA(1,1) models. This last sentence is also valid for higher-
order ARMA models.

2.4 Properties of the Sample Mean and Autocorrelation Function

A stationary process {Xt} is characterized, at least from a second-order point of view,
by its mean µ and its autocovariance function γ (·). The estimation of µ, γ (·), and the
autocorrelation function ρ(·) � γ (·)/γ (0) from observations X1, . . . , Xn therefore
plays a crucial role in problems of inference and in particular in the problem of
constructing an appropriate model for the data. In this section we examine some of
the properties of the sample estimates x̄ and ρ̂(·) of µ and ρ(·), respectively.
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2.4.1 Estimation of µ

The moment estimator of the mean µ of a stationary process is the sample mean

X̄n � n−1(X1 +X2 + · · · +Xn). (2.4.1)

It is an unbiased estimator of µ, since

E(X̄n) � n−1(EX1 + · · · + EXn) � µ.

The mean squared error of X̄n is

E(X̄n − µ)2 � Var(X̄n)

� n−2
n∑

i�1

n∑
j�1

Cov(Xi,Xj )

� n−2
n∑

i−j�−n
(n− |i − j |)γ (i − j)

� n−1
n∑

h�−n

(
1 − |h|

n

)
γ (h). (2.4.2)

Now if γ (h) → 0 as h → ∞, the right-hand side of (2.4.2) converges to zero,
so that X̄n converges in mean square to µ. If

∑∞
h�−∞ |γ (h)| < ∞, then (2.4.2)

gives limn→∞ nVar(X̄n) � ∑
|h|<∞ γ (h). We record these results in the following

proposition.

Proposition 2.4.1 If {Xt} is a stationary time series with mean µ and autocovariance function γ ( · ),
then as n → ∞,

Var(X̄n) � E(X̄n − µ)2 → 0

nE(X̄n − µ)2 →
∑
|h|<∞

γ (h)

if γ (n) → 0,

if
∞∑

h�−∞
|γ (h)| < ∞.

To make inferences about µ using the sample mean X̄n, it is necessary to know
the distribution or an approximation to the distribution of X̄n. If the time series is
Gaussian (see Definition A.3.2), then by Remark 2 of Section A.3 and (2.4.2),

n1/2(X̄n − µ) ∼ N

(
0,

∑
|h|<n

(
1 − |h|

n

)
γ (h)

)
.

It is easy to construct exact confidence bounds for µ using this result if γ (·) is
known, and approximate confidence bounds if it is necessary to estimate γ (·) from
the observations.
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For many time series, in particular for linear and ARMA models, X̄n is approxi-
mately normal with mean µ and variance n−1

∑
|h|<∞ γ (h) for large n (see TSTM, p.

219). An approximate 95% confidence interval for µ is then(
X̄n − 1.96v1/2/

√
n, X̄n + 1.96v1/2/

√
n
)
, (2.4.3)

where v � ∑
|h|<∞ γ (h). Of course, v is not generally known, so it must be estimated

from the data. The estimator computed in the program ITSM is v̂ � ∑
|h|<√

n

(
1 −

|h|/n)γ̂ (h). For ARMA processes this is a good approximation to v for large n.

Example 2.4.1 An AR(1) model

Let {Xt} be an AR(1) process with mean µ, defined by the equations

Xt − µ � φ(Xt−1 − µ)+ Zt,

where |φ| < 1 and {Zt} ∼ WN
(
0, σ 2

)
. From Example 2.2.1 we have γ (h) �

φ|h|σ 2/(1−φ2) and hence v � (
1+2

∑∞
h�1 φ

h
)
σ 2/

(
1−φ2

) � σ 2/(1−φ)2. Approx-
imate 95% confidence bounds for µ are therefore given by x̄n ± 1.96σn−1/2/(1−φ).
Since φ and σ are unknown in practice, they must be replaced in these bounds by
estimated values.

2.4.2 Estimation of γ(·) and ρ(·)
Recall from Section 1.4.1 that the sample autocovariance and autocorrelation func-
tions are defined by

γ̂ (h) � n−1
n−|h|∑
t�1

(
Xt+|h| − X̄n

)(
Xt − X̄n

)
(2.4.4)

and

ρ̂(h) � γ̂ (h)

γ̂ (0)
. (2.4.5)

Both the estimators γ̂ (h) and ρ̂(h) are biased even if the factorn−1 in (2.4.4) is replaced
by (n− h)−1. Nevertheless, under general assumptions they are nearly unbiased for
large sample sizes. The sample ACVF has the desirable property that for each k ≥ 1
the k-dimensional sample covariance matrix

̂k �


γ̂ (0) γ̂ (1) · · · γ̂ (k − 1)
γ̂ (1) γ̂ (0) · · · γ̂ (k − 2)

...
... · · · ...

γ̂ (k − 1) γ̂ (k − 2) · · · γ̂ (0)

 (2.4.6)

is nonnegative definite. To see this, first note that if ̂m is nonnegative definite, then
̂k is nonnegative definite for all k < m. So assume k ≥ n and write

̂k � n−1T T ′,
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where T is the k × 2k matrix

T �


0 · · · 0 0 Y1 Y2 · · · Yk
0 · · · 0 Y1 Y2 · · · Yk 0
...

...
0 Y1 Y2 · · · Yk 0 · · · 0

,
Yi � Xi − X̄n, i � 1, . . . , n, and Yi � 0 for i � n+ 1, . . . , k. Then for any real k× 1
vector a we have

a′̂ka � n−1(a′T )(T ′a) ≥ 0, (2.4.7)

and consequently the sample autocovariance matrix ̂k and sample autocorrelation
matrix

R̂k � ̂k/γ (0) (2.4.8)

are nonnegative definite. Sometimes the factor n−1 is replaced by (n − h)−1 in the
definition of γ̂ (h), but the resulting covariance and correlation matrices ̂n and R̂n

may not then be nonnegative definite. We shall therefore use the definitions (2.4.4)
and (2.4.5) of γ̂ (h) and ρ̂(h).

Remark 1. The matrices ̂k and R̂k are in fact nonsingular if there is at least one
nonzero Yi , or equivalently if γ̂ (0) > 0. To establish this result, suppose that γ̂ (0) > 0
and ̂k is singular. Then there is equality in (2.4.7) for some nonzero vector a, implying
that a′T � 0 and hence that the rank of T is less than k. Let Yi be the first nonzero
value of Y1, Y2, . . . , Yk, and consider the k× k submatrix of T consisting of columns
(i + 1) through (i + k). Since this matrix is lower right triangular with each diagonal
element equal to Yi , its determinant has absolute value |Yi |k �� 0. Consequently, the
submatrix is nonsingular, and T must have rank k, a contradiction.

Without further information beyond the observed data X1, . . . , Xn, it is impos-
sible to give reasonable estimates of γ (h) and ρ(h) for h ≥ n. Even for h slightly
smaller than n, the estimates γ̂ (h) and ρ̂(h) are unreliable, since there are so few pairs
(Xt+h, Xt) available (only one if h � n− 1). A useful guide is provided by Box and
Jenkins (1976), p. 33, who suggest that n should be at least about 50 and h ≤ n/4.

The sample ACF plays an important role in the selection of suitable models for
the data. We have already seen in Example 1.4.6 and Section 1.6 how the sample
ACF can be used to test for iid noise. For systematic inference concerning ρ(h),
we need the sampling distribution of the estimator ρ̂(h). Although the distribution
of ρ̂(h) is intractable for samples from even the simplest time series models, it can
usually be well approximated by a normal distribution for large sample sizes. For
linear models and in particular for ARMA models (see Theorem 7.2.2 of TSTM for
exact conditions) ρ̂k � (ρ̂(1), . . . , ρ̂(k))′ is approximately distributed for large n as
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N(ρk, n
−1W), i.e.,

ρ̂ ≈ N
(
ρ, n−1W

)
, (2.4.9)

where ρ � (ρ(1), . . . , ρ(k))′, and W is the covariance matrix whose (i, j) element
is given by Bartlett’s formula

wij �
∞∑

k�−∞

{
ρ(k + i)ρ(k + j)+ ρ(k − i)ρ(k + j)+ 2ρ(i)ρ(j)ρ2(k)

− 2ρ(i)ρ(k)ρ(k + j)− 2ρ(j)ρ(k)ρ(k + i)
}
.

Simple algebra shows that

wij �
∞∑
k�1

{ρ(k + i)+ ρ(k − i)− 2ρ(i)ρ(k)}

× {ρ(k + j)+ ρ(k − j)− 2ρ(j)ρ(k)}, (2.4.10)

which is a more convenient form of wij for computational purposes.

Example 2.4.2 iid Noise

If {Xt} ∼ IID
(
0, σ 2

)
, then ρ(h) � 0 for |h| > 0, so from (2.4.10) we obtain

wij �
{ 1 if i � j,

0 otherwise.

For large n, therefore, ρ̂(1), . . . , ρ̂(h) are approximately independent and identically
distributed normal random variables with mean 0 and variance n−1. This result is
the basis for the test that data are generated from iid noise using the sample ACF
described in Section 1.6. (See also Example 1.4.6.)

Example 2.4.3 An MA(1) process

If {Xt} is the MA(1) process of Example 1.4.4, i.e., if

Xt � Zt + θZt−1, t � 0,±1, . . . ,

where {Zt} ∼ WN(0, σ 2), then from (2.4.10)

wii �
{

1 − 3ρ2(1)+ 4ρ4(1), if i � 1,

1 + 2ρ2(1), if i > 1,

is the approximate variance of n−1/2(ρ̂(i)− ρ(i)) for large n. In Figure 2.1 we have
plotted the sample autocorrelation function ρ̂(k), k � 0, . . . , 40, for 200 observations
from the MA(1) model

Xt � Zt − .8Zt−1, (2.4.11)

where {Zt} is a sequence of iid N(0, 1) random variables. Here ρ(1) � −.8/1.64 �
−.4878 and ρ(h) � 0 for h > 1. The lag-one sample ACF is found to be ρ̂(1) �
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Figure 2-1
The sample autocorrelation

function of n � 200
observations of the MA(1)
process in Example 2.4.3,

showing the bounds
±1.96n−1/2(1 + 2ρ̂2(1))1/2. Lag 
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−.4333 � −6.128n−1/2, which would cause us (in the absence of our prior knowledge
of {Xt}) to reject the hypothesis that the data are a sample from an iid noise sequence.
The fact that |ρ̂(h)| ≤ 1.96n−1/2 for h � 2, . . . , 40 strongly suggests that the data are
from a model in which observations are uncorrelated past lag 1. In Figure 2.1 we have
plotted the bounds±1.96n−1/2(1+2ρ2(1))1/2, indicating the compatibility of the data
with the model (2.4.11). Since, however, ρ(1) is not normally known in advance, the
autocorrelations ρ̂(2), . . . , ρ̂(40)would in practice have been compared with the more
stringent bounds±1.96n−1/2 or with the bounds±1.96n−1/2(1+2ρ̂2(1))1/2 in order to
check the hypothesis that the data are generated by a moving-average process of order
1. Finally, it is worth noting that the lag-one correlation−.4878 is well inside the 95%
confidence bounds for ρ(1) given by ρ̂(1) ± 1.96n−1/2(1 − 3ρ̂2(1) + 4ρ̂4(1))1/2 �
−.4333 ± .1053. This further supports the compatibility of the data with the model
Xt � Zt − 0.8Zt−1.

Example 2.4.4 An AR(1) process

For the AR(1) process of Example 2.2.1,

Xt � φXt−1 + Zt,

where {Zt} is iid noise and |φ| < 1, we have, from (2.4.10) with ρ(h) � φ|h|,

wii �
i∑

k�1

φ2i
(
φ−k − φk

)2 +
∞∑

k�i+1

φ2k
(
φ−i − φi

)2

� (
1 − φ2i

)(
1 + φ2

)(
1 − φ2

)−1 − 2iφ2i , (2.4.12)
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Figure 2-2
The sample autocorrelation
function of the Lake Huron

residuals of Figure 1.10
showing the bounds

ρ̂(i)± 1.96n−1/2w 1/2
ii and the

model ACF ρ(i) � (.791)i . Lag 
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Sample ACF
95% Conf Bds

* Model ACF

i � 1, 2, . . . . In Figure 2.2 we have plotted the sample ACF of the Lake Huron
residuals y1, . . . , y98 from Figure 1.10 together with 95% confidence bounds for
ρ(i), i � 1, . . . , 40, assuming that data are generated from the AR(1) model

Yt � .791Yt−1 + Zt (2.4.13)

(see equation (1.4.3)). The confidence bounds are computed from ρ̂(i) ± 1.96n−1/2

w
1/2
ii , where wii is given in (2.4.12) with φ � .791. The model ACF, ρ(i) � (.791)i ,

is also plotted in Figure 2.2. Notice that the model ACF lies just outside the confi-
dence bounds at lags 2–6. This suggests some incompatibility of the data with the
model (2.4.13). A much better fit to the residuals is provided by the second-order
autoregression defined by (1.4.4).

2.5 Forecasting Stationary Time Series

We now consider the problem of predicting the values Xn+h, h > 0, of a station-
ary time series with known mean µ and autocovariance function γ in terms of the
values {Xn, . . . , X1}, up to time n. Our goal is to find the linear combination of
1, Xn,Xn−1, . . . , X1, that forecastsXn+h with minimum mean squared error. The best
linear predictor in terms of 1, Xn, . . . , X1 will be denoted by PnXn+h and clearly has
the form

PnXn+h � a0 + a1Xn + · · · + anX1. (2.5.1)
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It remains only to determine the coefficients a0, a1, . . . , an, by finding the values that
minimize

S(a0, . . . , an) � E(Xn+h − a0 − a1Xn − · · · − anX1)
2. (2.5.2)

(We already know from Problem 1.1 that P0Y � E(Y ).) Since S is a quadratic
function of a0, . . . , an and is bounded below by zero, it is clear that there is at least
one value of (a0, . . . , an) that minimizes S and that the minimum (a0, . . . , an) satisfies
the equations

∂S(a0, . . . , an)

∂aj
� 0, j � 0, . . . , n. (2.5.3)

Evaluation of the derivatives in equations (2.5.3) gives the equivalent equations

E

[
Xn+h − a0 −

n∑
i�1

aiXn+1−i

]
� 0, (2.5.4)

E

[
(Xn+h − a0 −

n∑
i�1

aiXn+1−i )Xn+1−j

]
� 0, j � 1, . . . , n. (2.5.5)

These equations can be written more neatly in vector notation as

a0 � µ

(
1 −

n∑
i�1

ai

)
(2.5.6)

and

nan � γn(h), (2.5.7)

where

an � (a1, . . . , an)
′, n � [γ (i − j)]ni,j�1 ,

and

γn(h) � (γ (h), γ (h+ 1), . . . , γ (h+ n− 1))′.

Hence,

PnXn+h � µ+
n∑

i�1

ai(Xn+1−i − µ), (2.5.8)

where an satisfies (2.5.7). From (2.5.8) the expected value of the prediction error
Xn+h − PnXn+h is zero, and the mean square prediction error is therefore

E(Xn+h − PnXn+h)2 � γ (0)− 2
n∑

i�1

aiγ (h+ i − 1)+
n∑

i�1

n∑
j�1

aiγ (i − j)aj

� γ (0)− a′
nγn(h), (2.5.9)

where the last line follows from (2.5.7).
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Remark 1. To show that equations (2.5.4) and (2.5.5) determine PnXn+h uniquely,
let

{
a
(1)
j , j � 0, . . . , n

}
and

{
a
(2)
j , j � 0, . . . , n

}
be two solutions and let Z be the

difference between the corresponding predictors, i.e.,

Z � a
(1)
0 − a

(2)
0 +

n∑
j�1

(
a
(1)
j − a

(2)
j

)
Xn+1−j .

Then

Z2 � Z

(
a
(1)
0 − a

(2)
0 +

n∑
j�1

(
a
(1)
j − a

(2)
j

)
Xn+1−j

)
.

But from (2.5.4) and (2.5.5) we have EZ � 0 and E(ZXn+1−j ) � 0 for j � 1, . . . , n.
Consequently, E(Z2) � 0 and hence Z � 0.

Properties of PnXn+h :

1. PnXn+h � µ+∑n

i�1 ai(Xn+1−i−µ), where an � (a1, . . . , an)
′ satisfies (2.5.7).

2. E(Xn+h−PnXn+h)2 � γ (0)−a′
nγn(h), where γn(h) � (γ (h), . . . , γ (h+n−

1))′.

3. E(Xn+h − PnXn+h) � 0.

4. E[(Xn+h − PnXn+h)Xj ] � 0, j � 1, . . . , n.

Remark 2. Notice that properties 3 and 4 are exactly equivalent to (2.5.4) and
(2.5.5). They can be written more succinctly in the form

E[(Error)× (PredictorVariable)] � 0. (2.5.10)

Equations (2.5.10), one for each predictor variable, therefore uniquely determine
PnXn+h.

Example 2.5.1 One-step prediction of an AR(1) series

Consider now the stationary time series defined in Example 2.2.1 by the equations

Xt � φXt−1 + Zt, t � 0,±1, . . . ,

where |φ| < 1 and {Zt} ∼ WN
(
0, σ 2

)
. From (2.5.7) and (2.5.8), the best linear

predictor of Xn+1 in terms of {1, Xn, . . . , X1} is (for n ≥ 1)

PnXn+1 � a′
nXn,
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where Xn � (Xn, . . . , X1)
′ and

1 φ φ2 · · · φn−1

φ 1 φ · · · φn−2

...
...

...
...

...
φn−1 φn−2 φn−3 · · · 1



a1

a2
...
an

 �


φ

φ2

...
φn

. (2.5.11)

A solution of (2.5.11) is clearly

an � (φ, 0, . . . , 0)′,

and hence the best linear predictor of Xn+1 in terms of {X1, . . . , Xn} is

PnXn+1 � a′
nXn � φXn,

with mean squared error

E(Xn+1 − PnXn+1)
2 � γ (0)− a′

nγn(1) � σ 2

1 − φ2
− φγ (1) � σ 2.

A simpler approach to this problem is to guess, by inspection of the equation defining
Xn+1, that the best predictor is φXn. Then to verify this conjecture, it suffices to check
(2.5.10) for each of the predictor variables 1, Xn, . . . , X1. The prediction error of the
predictor φXn is clearly Xn+1 − φXn � Zn+1. But E(Zn+1Y ) � 0 for Y � 1 and for
Y � Xj, j � 1, . . . , n. Hence, by (2.5.10), φXn is the required best linear predictor
in terms of 1, X1, . . . , Xn.

Prediction of Second-Order Random Variables
Suppose now that Y and Wn, . . . , W1 are any random variables with finite second
moments and that the means µ � EY , µi � EWi and covariances Cov(Y, Y ),
Cov(Y,Wi), and Cov(Wi,Wj) are all known. It is convenient to introduce the random
vector W � (Wn, . . . ,W1)

′, the corresponding vector of means µW � (µn, . . . , µ1)
′,

the vector of covariances

γ � Cov(Y,W) � (Cov(Y,Wn),Cov(Y,Wn−1), . . . ,Cov(Y,W1))
′,

and the covariance matrix

 � Cov(W,W) � [
Cov(Wn+1−i ,Wn+1−j )

]n
i,j�1

.

Then by the same arguments used in the calculation of PnXn+h, the best linear pre-
dictor of Y in terms of {1,Wn, . . . ,W1} is found to be

P(Y |W) � µY + a′(W − µW), (2.5.12)

where a � (a1, . . . , an)
′ is any solution of

a � γ. (2.5.13)
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The mean squared error of the predictor is

E
[
(Y − P(Y |W))2

] � Var(Y )− a′γ. (2.5.14)

Example 2.5.2 Estimation of a missing value

Consider again the stationary series defined in Example 2.2.1 by the equations

Xt � φXt−1 + Zt, t � 0,±1, . . . ,

where |φ| < 1 and {Zt} ∼ WN
(
0, σ 2

)
. Suppose that we observe the series at times

1 and 3 and wish to use these observations to find the linear combination of 1, X1,
and X3 that estimates X2 with minimum mean squared error. The solution to this
problem can be obtained directly from (2.5.12) and (2.5.13) by setting Y � X2 and
W � (X1, X3)

′. This gives the equations[
1 φ2

φ2 1

]
a �

[
φ

φ

]
,

with solution

a � 1
1 + φ2

[
φ

φ

]
.

The best estimator of X2 is thus

P(X2|W) � φ

1 + φ2
(X1 +X3) ,

with mean squared error

E[(X2 − P(X2|W))2] � σ 2

1 − φ2
− a′


φσ 2

1 − φ2

φσ 2

1 − φ2

 � σ 2

1 + φ2
.

The Prediction Operator P(·|W)

For any given W � (Wn, . . . ,W1)
′ and Y with finite second moments, we have seen

how to compute the best linear predictor P(Y |W) of Y in terms of 1, Wn, . . . ,W1

from (2.5.12) and (2.5.13). The function P(·|W), which converts Y into P(Y |W),
is called a prediction operator. (The operator Pn defined by equations (2.5.7) and
(2.5.8) is an example with W � (Xn,Xn−1, . . . , X1)

′.) Prediction operators have a
number of useful properties that can sometimes be used to simplify the calculation
of best linear predictors. We list some of these below.
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Properties of the Prediction Operator P(·|W):

Suppose that EU 2 < ∞, EV 2 < ∞,  � cov(W,W), and β, α1, . . . , αn are
constants.

1. P(U |W) � EU + a′(W − EW), where a � cov(U,W).

2. E[(U − P(U |W))W] � 0 and E[U − P(U |W)] � 0.

3. E[(U − P(U |W))2] � var(U)− a′cov(U,W).

4. P(α1U + α2V + β|W) � α1P(U |W)+ α2P(V |W)+ β.

5. P
(∑n

i�1 αiWi + β|W) � ∑n

i�1 αiWi + β.

6. P(U |W) � EU if cov(U,W) � 0.

7. P(U |W) � P(P (U |W,V)|W) if V is a random vector such that the compo-
nents of E(VV′) are all finite.

Example 2.5.3 One-step prediction of an AR(p) series

Suppose now that {Xt} is a stationary time series satisfying the equations

Xt � φ1Xt−1 + · · · + φpXt−p + Zt, t � 0,±1, . . . ,

where {Zt} ∼ WN
(
0, σ 2

)
and Zt is uncorrelated with Xs for each s < t . Then if

n > p, we can apply the prediction operator Pn to each side of the defining equations,
using properties (4), (5), and (6) to get

PnXn+1 � φ1Xn + · · · + φpXn+1−p.

Example 2.5.4 An AR(1) series with nonzero mean

The time series {Yt} is said to be an AR(1) process with mean µ if {Xt � Yt −µ} is a
zero-mean AR(1) process. Defining {Xt} as in Example 2.5.1 and letting Yt � Xt+µ,

we see that Yt satisfies the equation

Yt − µ � φ(Yt−1 − µ)+ Zt . (2.5.15)

If PnYn+h is the best linear predictor of Yn+h in terms of {1, Yn, . . . , Y1}, then appli-
cation of Pn to (2.5.15) with t � n+ 1, n+ 2, . . . gives the recursions

PnYn+h − µ � φ(PnYn+h−1 − µ), h � 1, 2, . . . .

Noting that PnYn � Yn, we can solve these equations recursively for PnYn+h,
h � 1, 2, . . ., to obtain

PnYn+h � µ+ φh(Yn − µ). (2.5.16)
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The corresponding mean squared error is (from (2.5.14))

E(Yn+h − PnYn+h)2 � γ (0)[1 − a′
nρn(h)]. (2.5.17)

From Example 2.2.1 we know that γ (0) � σ 2/
(
1 − φ2

)
and ρ(h) � φh, h ≥ 0.

Hence, substituting an �
(
φh, 0, . . . , 0

)′
(from (2.5.16)) into (2.5.17) gives

E(Yn+h − PnYn+h)2 � σ 2
(
1 − φ2h

)
/
(
1 − φ2

)
. (2.5.18)

Remark 3. In general, if {Yt} is a stationary time series with mean µ and if {Xt} is
the zero-mean series defined by Xt � Yt − µ, then since the collection of all linear
combinations of 1, Yn, . . . , Y1 is the same as the collection of all linear combinations of
1, Xn, . . . , X1, the linear predictor of any random variableW in terms of 1, Yn, . . . , Y1

is the same as the linear predictor in terms of 1, Xn, . . . , X1. Denoting this predictor
by PnW and applying Pn to the equation Yn+h � Xn+h + µ gives

PnYn+h � µ+ PnXn+h. (2.5.19)

Thus the best linear predictor of Yn+h can be determined by finding the best linear
predictor ofXn+h and then addingµ. Note from (2.5.8) that sinceE(Xt) � 0, PnXn+h
is the same as the best linear predictor of Xn+h in terms of Xn, . . . , X1 only.

2.5.1 The Durbin–Levinson Algorithm

In view of Remark 3 above, we can restrict attention from now on to zero-mean
stationary time series, making the necessary adjustments for the mean if we wish
to predict a stationary series with nonzero mean. If {Xt} is a zero-mean stationary
series with autocovariance function γ (·), then in principle the equations (2.5.12)
and (2.5.13) completely solve the problem of determining the best linear predictor
PnXn+h of Xn+h in terms of {Xn, . . . , X1}. However, the direct approach requires the
determination of a solution of a system of n linear equations, which for large n may
be difficult and time-consuming. In cases where the process is defined by a system
of linear equations (as in Examples 2.5.2 and 2.5.3) we have seen how the linearity
of Pn can be used to great advantage. For more general stationary processes it would
be helpful if the one-step predictor PnXn+1 based on n previous observations could
be used to simplify the calculation of Pn+1Xn+2, the one-step predictor based on
n+ 1 previous observations. Prediction algorithms that utilize this idea are said to be
recursive. Two important examples are the Durbin–Levinson algorithm, discussed
in this section, and the innovations algorithm, discussed in Section 2.5.2 below.

We know from (2.5.12) and (2.5.13) that if the matrix n is nonsingular, then

PnXn+1 � φ′
nXn � φn1Xn + · · · + φnnX1,

where

φn � −1
n γn,
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γn � (γ (1), . . . , γ (n))′, and the corresponding mean squared error is

vn :� E(Xn+1 − PnXn+1)
2 � γ (0)− φ′

nγn.

A useful sufficient condition for nonsingularity of all the autocovariance matrices
1, 2, . . . is γ (0) > 0 and γ (h) → 0 as h → ∞. (For a proof of this result see
TSTM, Proposition 5.1.1.)

The Durbin–Levinson Algorithm:

The coefficients φn1, . . . , φnn can be computed recursively from the equations

φnn �
[
γ (n)−

n−1∑
j�1

φn−1,j γ (n− j)

]
v−1
n−1, (2.5.20)


φn1

...
φn,n−1

 �


φn−1,1

...
φn−1,n−1

− φnn


φn−1,n−1

...
φn−1,1

 (2.5.21)

and

vn � vn−1

[
1 − φ2

nn

]
, (2.5.22)

where φ11 � γ (1)/γ (0) and v0 � γ (0).

Proof The definition of φ11 ensures that the equation

Rnφn � ρn (2.5.23)

(where ρn � (ρ(1), . . . , ρ(n))′) is satisfied for n � 1. The first step in the proof is to
show that φn, defined recursively by (2.5.20) and (2.5.21), satisfies (2.5.23) for all n.
Suppose this is true for n � k. Then, partitioning Rk+1 and defining

ρ
(r)

k :� (ρ(k), ρ(k − 1), . . . , ρ(1))′

and

φ
(r)

k :� (φkk, φk,k−1, . . . , φk1)
′,

we see that the recursions imply

Rk+1φk+1 �
[

Rk ρ
(r)

k

ρ
(r)

k
′ 1

][
φk − φk+1,k+1φ

(r)

k

φk+1,k+1

]

�
[

ρk − φk+1,k+1ρ
(r)

k + φk+1,k+1ρ
(r)

k

ρ
(r)

k
′φk − φk+1,k+1ρ

(r)

k
′φ(r)

k + φk+1,k+1

]
� ρk+1,
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as required. Here we have used the fact that if Rkφk � ρk, then Rkφ
(r)

k � ρ
(r)

k . This
is easily checked by writing out the component equations in reverse order. Since
(2.5.23) is satisfied for n � 1, it follows by induction that the coefficient vectors φn

defined recursively by (2.5.20) and (2.5.21) satisfy (2.5.23) for all n.
It remains only to establish that the mean squared errors

vn :� E(Xn+1 − φ′
nXn)

2

satisfy v0 � γ (0) and (2.5.22). The fact that v0 � γ (0) is an immediate consequence
of the definition P0X1 :� E(X1) � 0. Since we have shown that φ′

nXn is the best
linear predictor of Xn+1, we can write, from (2.5.9) and (2.5.21),

vn � γ (0)− φ′
nγn � γ (0)− φ′

n−1γn−1 + φnnφ
(r)′
n−1γn−1 − φnnγ (n).

Applying (2.5.9) again gives

vn � vn−1 + φnn

(
φ
(r)′
n−1γn−1 − γ (n)

)
,

and hence, by (2.5.20),

vn � vn−1 − φ2
nn(γ (0)− φ′

n−1γn−1) � vn−1

(
1 − φ2

nn

)
.

Remark 4. Under the conditions of the proposition, the function defined by α(0) �
1 and α(n) � φnn, n � 1, 2, . . ., is known as the partial autocorrelation function
(PACF) of {Xt}. It will be discussed further in Section 3.2. Of particular interest is
equation (2.5.22), which shows the relation between α(n) and the reduction in the
one-step mean squared error as the number of predictors is increased from n − 1
to n.

2.5.2 The Innovations Algorithm

The recursive algorithm to be discussed in this section is applicable to all series
with finite second moments, regardless of whether they are stationary or not. Its
application, however, can be simplified in certain special cases.

Suppose then that {Xt} is a zero-mean series with E|Xt |2 < ∞ for each t and

E(XiXj) � κ(i, j). (2.5.24)

It will be convenient to introduce the following notation for the best one-step predic-
tors and their mean squared errors:

X̂n �
{

0, if n � 1,

Pn−1Xn, if n � 2, 3, . . . ,

and

vn � E(Xn+1 − PnXn+1)
2.

We shall also introduce the innovations, or one-step prediction errors,

Un � Xn − X̂n.



The Bartlett Press, Inc. brockwel 8 · i · 2002 1:59 p.m. Page 72

This page is one line long.

72 Chapter 2 Stationary Processes

In terms of the vectors Un � (U1, . . . , Un)
′ and Xn � (X1, . . . , Xn)

′ the last equations
can be written as

Un � AnXn, (2.5.25)

where An has the form

An �


1 0 0 · · · 0
a11 1 0 · · · 0
a22 a21 1 · · · 0
...

...
...

. . . 0
an−1,n−1 an−1,n−2 an−1,n−3 · · · 1

.

(If {Xt} is stationary, then aij � −aj with aj as in (2.5.7) with h � 1.) This implies
that An is nonsingular, with inverse Cn of the form

Cn �


1 0 0 · · · 0
θ11 1 0 · · · 0
θ22 θ21 1 · · · 0
...

...
...

. . . 0
θn−1,n−1 θn−1,n−2 θn−1,n−3 · · · 1

.

The vector of one-step predictors X̂n :� (X1, P1X2, . . . , Pn−1Xn)
′ can therefore be

expressed as

X̂n � Xn − Un � CnUn − Un � n

(
Xn − X̂n

)
, (2.5.26)

where

n �


0 0 0 · · · 0
θ11 0 0 · · · 0
θ22 θ21 0 · · · 0
...

...
...

. . . 0
θn−1,n−1 θn−1,n−2 θn−1,n−3 · · · 0


and Xn itself satisfies

Xn � Cn

(
Xn − X̂n

)
. (2.5.27)

Equation (2.5.26) can be rewritten as

X̂n+1 �


0, if n � 0,
n∑

j�1

θnj

(
Xn+1−j − X̂n+1−j

)
, if n � 1, 2, . . . ,

(2.5.28)

from which the one-step predictors X̂1, X̂2, . . . can be computed recursively once
the coefficients θij have been determined. The following algorithm generates these
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coefficients and the mean squared errors vi � E
(
Xi+1 − X̂i+1

)2
, starting from the

covariances κ(i, j).

The Innovations Algorithm:

The coefficients θn1, . . . , θnn can be computed recursively from the equations

v0 � κ(1, 1),

θn,n−k � v−1
k

(
κ(n+ 1, k + 1)−

k−1∑
j�0

θk,k−j θn,n−j vj

)
, 0 ≤ k < n,

and

vn � κ(n+ 1, n+ 1)−
n−1∑
j�0

θ 2
n,n−j vj .

(It is a trivial matter to solve first for v0, then successively for θ11, v1; θ22, θ21, v2; θ33,
θ32, θ31, v3; . . . .)

Proof See TSTM, Proposition 5.2.2.

Remark 5. While the Durbin–Levinson recursion gives the coefficients of
Xn, . . . , X1 in the representation X̂n+1 � ∑n

j�1 φnjXn+1−j , the innovations algo-

rithm gives the coefficients of
(
Xn − X̂n

)
, . . . ,

(
X1 − X̂1

)
, in the expansion X̂n+1 �∑n

j�1 θnj
(
Xn+1−j − X̂n+1−j

)
. The latter expansion has a number of advantages deriv-

ing from the fact that the innovations are uncorrelated (see Problem 2.20). It can also
be greatly simplified in the case of ARMA(p, q) series, as we shall see in Section
3.3. An immediate consequence of (2.5.28) is the innovations representation of Xn+1

itself. Thus (defining θn0 :� 1),

Xn+1 � Xn+1 − X̂n+1 + X̂n+1 �
n∑

j�0

θnj

(
Xn+1−j − X̂n+1−j

)
, n � 0, 1, 2, . . . .

Example 2.5.5 Recursive prediction of an MA(1)

If {Xt} is the time series defined by

Xt � Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
,

then κ(i, j) � 0 for |i − j | > 1, κ(i, i) � σ 2
(
1 + θ 2

)
, and κ(i, i + 1) � θσ 2.

Application of the innovations algorithm leads at once to the recursions

θnj � 0, 2 ≤ j ≤ n,

θn1 � v−1
n−1θσ

2,

v0 � (1 + θ 2)σ 2,
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and

vn �
[
1 + θ 2 − v−1

n−1θ
2σ 2

]
σ 2.

For the particular case

Xt � Zt − 0.9Zt−1, {Zt} ∼ WN(0, 1),

the mean squared errors vn of X̂n+1 and coefficients θnj , 1 ≤ j ≤ n, in the innovations
representation

X̂n+1 �
n∑

j�1

θnj

(
Xn+1−j − X̂n+1−j

)
� θn1

(
Xn − X̂n

)
are found from the recursions to be as follows:

v0 � 1.8100,
θ11 � −.4972, v1 � 1.3625,
θ21 � −.6606, θ22 � 0, v2 � 1.2155,
θ31 � −.7404, θ32 � 0, θ33 � 0, v3 � 1.1436,
θ41 � −.7870, θ42 � 0, θ43 � 0, θ44 � 0, v4 � 1.1017.

If we apply the Durbin–Levinson algorithm to the same problem, we find that the
mean squared errors vn of X̂n+1 and coefficients φnj , 1 ≤ j ≤ n, in the representation

X̂n+1 �
n∑

j�1

φnjXn+1−j

are as follows:

v0 � 1.8100,
φ11 � −.4972, v1 � 1.3625,
φ21 � −.6606, φ22 � −.3285, v2 � 1.2155,
φ31 � −.7404, φ32 � −.4892, φ33 � −.2433, v3 � 1.1436,
φ41 � −.7870, φ42 � −.5828, φ43 � −.3850, φ44 � −.1914, v4 � 1.1017.

Notice that as n increases, vn approaches the white noise variance and θn1 approaches
θ . These results hold for any MA(1) process with |θ | < 1. The innovations algorithm
is particularly well suited to forecasting MA(q) processes, since for them θnj � 0
for n− j > q. For AR(p) processes the Durbin–Levinson algorithm is usually more
convenient, since φnj � 0 for n− j > p.

Recursive Calculation of the h-Step Predictors
For h-step prediction we use the result

Pn(Xn+k − Pn+k−1Xn+k) � 0, k ≥ 1. (2.5.29)

This follows from (2.5.10) and the fact that

E[(Xn+k − Pn+k−1Xn+k − 0)Xn+j−1] � 0, j � 1, . . . , n.
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Hence,

PnXn+h � PnPn+h−1Xn+h

� PnX̂n+h

� Pn

(
n+h−1∑
j�1

θn+h−1,j

(
Xn+h−j − X̂n+h−j

))
.

Applying (2.5.29) again and using the linearity of Pn we find that

PnXn+h �
n+h−1∑
j�h

θn+h−1,j

(
Xn+h−j − X̂n+h−j

)
, (2.5.30)

where the coefficients θnj are determined as before by the innovations algorithm.
Moreover, the mean squared error can be expressed as

E(Xn+h − PnXn+h)2 � EX2
n+h − E(PnXn+h)2

� κ(n+ h, n+ h)−
n+h−1∑
j�h

θ 2
n+h−1,j vn+h−j−1. (2.5.31)

2.5.3 Prediction of a Stationary Process in Terms of Infinitely Many Past
Values

It is often useful, when many past observations Xm, . . . , X0, X1, . . . , Xn (m < 0)
are available, to evaluate the best linear predictor of Xn+h in terms of 1, Xm, . . . , X0,

. . . , Xn. This predictor, which we shall denote by Pm,nXn+h, can easily be evaluated
by the methods described above. If |m| is large, this predictor can be approximated
by the sometimes more easily calculated mean square limit

P̃nXn+h � lim
m→−∞

Pm,nXn+h.

We shall refer to P̃n as the prediction operator based on the infinite past, {Xt,
− ∞ < t ≤ n}. Analogously we shall refer to Pn as the prediction operator based
on the finite past, {X1, . . . , Xn}. (Mean square convergence of random variables is
discussed in Appendix C.)

Determination of P̃nXn+h
Like PnXn+h, the best linear predictor P̃nXn+h when {Xn} is a zero-mean stationary
process with autocovariance function γ (·) is characterized by the equations

E
[(
Xn+h − P̃nXn+h

)
Xn+1−i

]
� 0, i � 1, 2, . . . .

If we can find a solution to these equations, it will necessarily be the uniquely defined
predictor P̃nXn+h. An approach to this problem that is often effective is to assume
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that P̃nXn+h can be expressed in the form

P̃nXn+h �
∞∑
j�1

αjXn+1−j ,

in which case the preceding equations reduce to

E

[(
Xn+h −

∞∑
j�1

αjXn+1−j

)
Xn+1−i

]
� 0, i � 1, 2, . . . ,

or equivalently,

∞∑
j�1

γ (i − j)αj � γ (h+ i − 1), i � 1, 2, . . . .

This is an infinite set of linear equations for the unknown coefficientsαi that determine
P̃nXn+h, provided that the resulting series converges.

Properties of P̃n:

Suppose thatEU 2 < ∞,EV 2 < ∞,a, b, and c are constants, and�Cov(W,W).

1. E[(U − P̃n(U))Xj ] � 0, j ≤ n.

2. P̃n(aU + bV + c) � aP̃n(U)+ bP̃n(V )+ c.

3. P̃n(U) � U if U is a limit of linear combinations of Xj , j ≤ n.

4. P̃n(U) � EU if Cov(U,Xj) � 0 for all j ≤ n.

These properties can sometimes be used to simplify the calculation of
P̃nXn+h, notably when the process {Xt} is an ARMA process.

Example 2.5.7 Consider the causal invertible ARMA(1,1) process {Xt} defined by

Xt − φXt−1 � Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
.

We know from (2.3.3) and (2.3.5) that we have the representations

Xn+1 � Zn+1 + (φ + θ)

∞∑
j�1

φj−1Zn+1−j

and

Zn+1 � Xn+1 − (φ + θ)

∞∑
j�1

(−θ)j−1Xn+1−j .
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Applying the operator P̃n to the second equation and using the properties of P̃n gives

P̃nXn+1 � (φ + θ)

∞∑
j�1

(−θ)j−1Xn+1−j .

Applying the operator P̃n to the first equation and using the properties of P̃n gives

P̃nXn+1 � (φ + θ)

∞∑
j�1

φj−1Zn+1−j .

Hence,

Xn+1 − P̃nXn+1 � Zn+1,

and so the mean squared error of the predictor P̃nXn+1 is EZ2
n+1 � σ 2.

2.6 The Wold Decomposition

Consider the stationary process

Xt � A cos(ωt)+ B sin(ωt),

where ω ∈ (0, π) is constant and A,B are uncorrelated random variables with mean
0 and variance σ 2. Notice that

Xn � (2 cosω)Xn−1 −Xn−2 � P̃n−1Xn, n � 0,±1, . . . ,

so that Xn − P̃n−1Xn � 0 for all n. Processes with the latter property are said to be
deterministic.

The Wold Decomposition:

If {Xt} is a nondeterministic stationary time series, then

Xt �
∞∑
j�0

ψjZt−j + Vt, (2.6.1)

where

1. ψ0 � 1 and
∑∞

j�0 ψ
2
j < ∞,

2. {Zt} ∼ WN
(
0, σ 2

)
,

3. Cov(Zs, Vt ) � 0 for all s and t ,

4. Zt � P̃tZt for all t ,

5. Vt � P̃sVt for all s and t , and

6. {Vt} is deterministic.
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Here as in Section 2.5, P̃tY denotes the best predictor of Y in terms of linear com-
binations, or limits of linear combinations of 1, Xs,−∞ < s ≤ t . The sequences
{Zt}, {ψj }, and {Vt} are unique and can be written explicitly as Zt � Xt − P̃t−1Xt ,
ψj � E(XtZt−j )/E

(
Z2
t

)
, and Vt � Xt −

∑∞
j�0 ψjZt−j . (See TSTM, p. 188.) For

most of the zero-mean stationary time series dealt with in this book (in particular for
all ARMA processes) the deterministic component Vt is 0 for all t , and the series is
then said to be purely nondeterministic.

Example 2.6.1 If Xt � Ut + Y , where {Ut} ∼ WN
(
0, ν2

)
, E(UtY ) � 0 for all t , and Y has mean

0 and variance τ 2, then P̃t−1Xt � Y , since Y is the mean square limit as s → ∞ of
[Xt−1 +· · ·+Xt−s]/s, and E[(Xt −Y )Xs] � 0 for all s ≤ t−1. Hence the sequences
in the Wold decomposition of {Xt} are given by Zt � Ut, ψ0 � 1, ψj � 0 for j > 0,
and Vt � Y .

Problems

2.1. Suppose that X1, X2, . . ., is a stationary time series with mean µ and ACF ρ(·).
Show that the best predictor ofXn+h of the form aXn+b is obtained by choosing
a � ρ(h) and b � µ(1 − ρ(h)).

2.2. Show that the process

Xt � A cos(ωt)+ B sin(ωt), t � 0,±1, . . .

(where A and B are uncorrelated random variables with mean 0 and variance 1
and ω is a fixed frequency in the interval [0, π]), is stationary and find its mean
and autocovariance function. Deduce that the function κ(h) � cos(ωh), h �
0,±1, . . ., is nonnegative definite.

2.3. a. Find the ACVF of the time series Xt � Zt + .3Zt−1 − .4Zt−2, where {Zt} ∼
WN(0, 1).

b. Find the ACVF of the time series Yt � Z̃t − 1.2Z̃t−1 − 1.6Z̃t−2, where
{Z̃t} ∼ WN(0, .25). Compare with the answer found in (a).

2.4. It is clear that the function κ(h) � 1, h � 0,±1, . . . , is an autocovariance
function, since it is the autocovariance function of the process Xt � Z, t �
0,±1, . . ., where Z is a random variable with mean 0 and variance 1. By iden-
tifying appropriate sequences of random variables, show that the following
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functions are also autocovariance functions:

(a) κ(h) � (−1)|h|

(b) κ(h) � 1 + cos
(
πh

2

)
+ cos

(
πh

4

)

(c) κ(h) �


1, if h � 0,

0.4, if h � ±1,

0, otherwise.

2.5. Suppose that {Xt, t � 0,±1, . . .} is stationary and that |θ | < 1. Show that for
each fixed n the sequence

Sm �
m∑
j�1

θjXn−j

is convergent absolutely and in mean square (see Appendix C) as m → ∞.

2.6. Verify equations (2.2.6).

2.7. Show, using the geometric series 1/(1− x) � ∑∞
j�0 x

j for |x| < 1, that 1/(1−
φz) � −∑∞

j�1 φ
−j z−j for |φ| > 1 and |z| ≥ 1.

2.8. Show that the autoregressive equations

Xt � φ1Xt−1 + Zt, t � 0,±1, . . . ,

where {Zt} ∼ WN
(
0, σ 2

)
and |φ| � 1, have no stationary solution. HINT:

Suppose there does exist a stationary solution {Xt} and use the autoregressive
equation to derive an expression for the variance of Xt − φn+1

1 Xt−n−1 that con-
tradicts the stationarity assumption.

2.9. Let {Yt} be the AR(1) plus noise time series defined by

Yt � Xt +Wt,

where {Wt} ∼ WN
(
0, σ 2

w

)
, {Xt} is the AR(1) process of Example 2.2.1, i.e.,

Xt − φXt−1 � Zt, {Zt} ∼ WN
(
0, σ 2

z

)
,

and E(WsZt) � 0 for all s and t .

a. Show that {Yt} is stationary and find its autocovariance function.

b. Show that the time series Ut :� Yt − φYt−1 is 1-correlated and hence, by
Proposition 2.1.1, is an MA(1) process.

c. Conclude from (b) that {Yt} is an ARMA(1,1) process and express the three
parameters of this model in terms of φ, σ 2

w, and σ 2
z .
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2.10. Use the program ITSM to compute the coefficients ψj and πj , j � 1, . . . , 5, in
the expansions

Xt �
∞∑
j�0

ψjZt−j

and

Zt �
∞∑
j�0

πjXt−j

for the ARMA(1,1) process defined by the equations

Xt − 0.5Xt−1 � Zt + 0.5Zt−1, {Zt} ∼ WN
(
0, σ 2

)
.

(Select File>Project>New>Univariate, then Model>Specify. In the result-
ing dialog box enter 1 for the AR and MA orders, specify φ(1) � θ(1) � 0.5,
and click OK. Finally, select Model>AR/MA Infinity>Default lag and the
values of ψj and πj will appear on the screen.) Check the results with those
obtained in Section 2.3.

2.11. Suppose that in a sample of size 100 from an AR(1) process with mean µ,
φ � .6, and σ 2 � 2 we obtain x̄100 � .271. Construct an approximate 95%
confidence interval for µ. Are the data compatible with the hypothesis that
µ � 0?

2.12. Suppose that in a sample of size 100 from an MA(1) process with mean µ,
θ � −.6, and σ 2 � 1 we obtain x̄100 � .157. Construct an approximate 95%
confidence interval for µ. Are the data compatible with the hypothesis that
µ � 0?

2.13. Suppose that in a sample of size 100, we obtain ρ̂(1) � .438 and ρ̂(2) � .145.

a. Assuming that the data were generated from an AR(1) model, construct
approximate 95% confidence intervals for both ρ(1) and ρ(2). Based on
these two confidence intervals, are the data consistent with an AR(1) model
with φ � .8?

b. Assuming that the data were generated from an MA(1) model, construct
approximate 95% confidence intervals for both ρ(1) and ρ(2). Based on
these two confidence intervals, are the data consistent with an MA(1) model
with θ � .6?

2.14. Let {Xt} be the process defined in Problem 2.2.

a. Find P1X2 and its mean squared error.

b. Find P2X3 and its mean squared error.

c. Find P̃nXn+1 and its mean squared error.



The Bartlett Press, Inc. brockwel 8 · i · 2002 1:59 p.m. Page 81

Problems 81

2.15. Suppose that {Xt, t � 0,±1, . . .} is a stationary process satisfying the equations

Xt � φ1Xt−1 + · · · + φpXt−p + Zt,

where {Zt} ∼ WN
(
0, σ 2

)
and Zt is uncorrelated with Xs for each s < t . Show

that the best linear predictorPnXn+1 ofXn+1 in terms of 1, X1, . . . , Xn, assuming
n > p, is

PnXn+1 � φ1Xn + · · · + φpXn+1−p.

What is the mean squared error of PnXn+1?

2.16. Use the program ITSM to plot the sample ACF and PACF up to lag 40 of the
sunspot series Dt, t � 1, 100, contained in the ITSM file SUNSPOTS.TSM.
(Open the project SUNSPOTS.TSM and click on the second yellow button at
the top of the screen to see the graphs. Repeated clicking on this button will
toggle between graphs of the sample ACF, sample PACF, and both. To see the
numerical values, right-click on the graph and select Info.) Fit an AR(2) model
to the mean-corrected data by selecting Model>Estimation>Preliminary
and click Yes to subtract the sample mean from the data. In the dialog box that
follows, enter 2 for the AR order and make sure that the MA order is zero and
that the Yule-Walker algorithm is selected without AICC minimization. Click
OK and you will obtain a model of the form

Xt � φ1Xt−1 + φ2Xt−2 + Zt, where {Zt} ∼ WN
(
0, σ 2

)
,

for the mean-corrected series Xt � Dt − 46.93. Record the values of the es-
timated parameters φ1, φ2, and σ 2. Compare the model and sample ACF and
PACF by selecting the third yellow button at the top of the screen. Print the
graphs by right-clicking and selecting Print.

2.17. Without exiting from ITSM, use the model found in the preceding problem to
compute forecasts of the next ten values of the sunspot series. (Select Fore-
casting>ARMA, make sure that the number of forecasts is set to 10 and the box
Add the mean to the forecasts is checked, and then click OK. You will
see a graph of the original data with the ten forecasts appended. Right-click on
the graph and then on Info to get the numerical values of the forecasts. Print
the graph as described in Problem 2.16.) The details of the calculations will be
taken up in Chapter 3 when we discuss ARMA models in detail.

2.18. Let {Xt} be the stationary process defined by the equations

Xt � Zt − θZt−1, t � 0,±1, . . . ,
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where |θ | < 1 and {Zt} ∼ WN
(
0, σ 2

)
. Show that the best linear predictor

P̃nXn+1 of Xn+1 based on {Xj,−∞ < j ≤ n} is

P̃nXn+1 � −
∞∑
j�1

θjXn+1−j .

What is the mean squared error of the predictor P̃nXn+1?

2.19. If {Xt} is defined as in Problem 2.18 and θ � 1, find the best linear predictor
PnXn+1 ofXn+1 in terms ofX1, . . . , Xn. What is the corresponding mean squared
error?

2.20. In the innovations algorithm, show that for each n ≥ 2, the innovation Xn− X̂n

is uncorrelated with X1, . . . , Xn−1. Conclude that Xn − X̂n is uncorrelated with
the innovations X1 − X̂1, . . . , Xn−1 − X̂n−1.

2.21. Let X1, X2, X4, X5 be observations from the MA(1) model

Xt � Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
.

a. Find the best linear estimate of the missing value X3 in terms of X1 and X2.

b. Find the best linear estimate of the missing value X3 in terms of X4 and X5.

c. Find the best linear estimate of the missing value X3 in terms of X1, X2, X4,
and X5.

d. Compute the mean squared errors for each of the estimates in (a), (b), and
(c).

2.22. Repeat parts (a)–(d) of Problem 2.21 assuming now that the observations X1,
X2, X4, X5 are from the causal AR(1) model

Xt � φXt−1 + Zt, {Zt} ∼ WN
(
0, σ 2

)
.
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3.1 ARMA(p, q) Processes
3.2 The ACF and PACF of an ARMA(p, q) Process
3.3 Forecasting ARMA Processes

In this chapter we introduce an important parametric family of stationary time series,
the autoregressive moving-average, or ARMA, processes. For a large class of autoco-
variance functions γ (·) it is possible to find an ARMA process {Xt} with ACVF γX(·)
such that γ (·) is well approximated by γX(·). In particular, for any positive integer
K , there exists an ARMA process {Xt} such that γX(h) � γ (h) for h � 0, 1, . . . , K .
For this (and other) reasons, the family of ARMA processes plays a key role in the
modeling of time series data. The linear structure of ARMA processes also leads
to a substantial simplification of the general methods for linear prediction discussed
earlier in Section 2.5.

3.1 ARMA(p,q) Processes

In Section 2.3 we introduced an ARMA(1,1) process and discussed some of its key
properties. These included existence and uniqueness of stationary solutions of the
defining equations and the concepts of causality and invertibility. In this section we
extend these notions to the general ARMA(p, q) process.

Definition 3.1.1 {Xt} is an ARMA(p, q) process if {Xt} is stationary and if for every t ,

Xt − φ1Xt−1 − · · · − φpXt−p � Zt + θ1Zt−1 + · · · + θqZt−q, (3.1.1)

where {Zt} ∼ WN
(
0, σ 2

)
and the polynomials

(
1 − φ1z − . . . − φpz

p
)

and
(
1 +

θ1z+ . . .+ θqz
q
)

have no common factors.
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The process {Xt} is said to be an ARMA(p, q) process with mean µ if {Xt −µ}
is an ARMA(p, q) process.

It is convenient to use the more concise form of (3.1.1)

φ(B)Xt � θ(B)Zt , (3.1.2)

where φ(·) and θ(·) are the pth and qth-degree polynomials

φ(z) � 1 − φ1z− · · · − φpz
p

and

θ(z) � 1 + θ1z+ · · · + θqz
q,

and B is the backward shift operator (BjXt � Xt−j , BjZt � Zt−j , j � 0,±1, . . .).
The time series {Xt} is said to be an autoregressive process of order p (or AR(p))
if θ(z) ≡ 1, and a moving-average process of order q (or MA(q)) if φ(z) ≡ 1.

An important part of Definition 3.1.1 is the requirement that {Xt} be stationary.
In Section 2.3 we showed, for the ARMA(1,1) equations (2.3.1), that a stationary
solution exists (and is unique) if and only if φ1 �� ±1. The latter is equivalent to the
condition that the autoregressive polynomial φ(z) � 1 − φ1z �� 0 for z � ±1. The
analogous condition for the general ARMA(p, q) process is φ(z) � 1 − φ1z− · · · −
φpz

p �� 0 for all complex z with |z| � 1. (Complex z is used here, since the zeros of
a polynomial of degree p > 1 may be either real or complex. The region defined by
the set of complex z such that |z| � 1 is referred to as the unit circle.) If φ(z) �� 0 for
all z on the unit circle, then there exists δ > 0 such that

1
φ(z)

�
∞∑

j�−∞
χjz

j for 1 − δ < |z| < 1 + δ,

and
∑∞

j�−∞ |χj | < ∞. We can then define 1/φ(B) as the linear filter with absolutely
summable coefficients

1
φ(B)

�
∞∑

j�−∞
χjB

j .

Applying the operator χ(B) :� 1/φ(B) to both sides of (3.1.2), we obtain

Xt � χ(B)φ(B)Xt � χ(B)θ(B)Zt � ψ(B)Zt �
∞∑

j�−∞
ψjZt−j , (3.1.3)

where ψ(z) � χ(z)θ(z) � ∑∞
j�−∞ ψjz

j . Using the argument given in Section 2.3
for the ARMA(1,1) process, it follows that ψ(B)Zt is the unique stationary solution
of (3.1.1).
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Existence and Uniqueness:

A stationary solution {Xt} of equations (3.1.1) exists (and is also the unique sta-
tionary solution) if and only if

φ(z) � 1 − φ1z− · · · − φpz
p �� 0 for all |z| � 1. (3.1.4)

In Section 2.3 we saw that the ARMA(1,1) process is causal, i.e., that Xt can be
expressed in terms of Zs, s ≤ t , if and only if |φ1| < 1. For a general ARMA(p, q)
process the analogous condition is that φ(z) �� 0 for |z| ≤ 1, i.e., the zeros of the
autoregressive polynomial must all be greater than 1 in absolute value.

Causality:

An ARMA(p, q) process {Xt} is causal, or a causal function of {Zt}, if there
exist constants {ψj } such that

∑∞
j�0 |ψj | < ∞ and

Xt �
∞∑
j�0

ψjZt−j for all t. (3.1.5)

Causality is equivalent to the condition

φ(z) � 1 − φ1z− · · · − φpz
p �� 0 for all |z| ≤ 1. (3.1.6)

The proof of the equivalence between causality and (3.1.6) follows from ele-
mentary properties of power series. From (3.1.3) we see that {Xt} is causal if and
only if χ(z) :� 1/φ(z) � ∑∞

j�0 χjz
j (assuming that φ(z) and θ(z) have no common

factors). But this, in turn, is equivalent to (3.1.6).
The sequence {ψj } in (3.1.5) is determined by the relation ψ(z) � ∑∞

j�0 ψjz
j �

θ(z)/φ(z), or equivalently by the identity(
1 − φ1z− · · · − φpz

p
)
(ψ0 + ψ1z+ · · ·) � 1 + θ1z+ · · · + θqz

q.

Equating coefficients of zj , j � 0, 1, . . ., we find that

1 � ψ0,

θ1 � ψ1 − ψ0φ1,

θ2 � ψ2 − ψ1φ1 − ψ0φ2,

...

or equivalently,

ψj −
p∑

k�1

φkψj−k � θj , j � 0, 1, . . . , (3.1.7)
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where θ0 :� 1, θj :� 0 for j > q, and ψj :� 0 for j < 0.
Invertibility, which allows Zt to be expressed in terms of Xs, s ≤ t , has a similar

characterization in terms of the moving-average polynomial.

Invertibility:

An ARMA(p, q) process {Xt} is invertible if there exist constants {πj } such that∑∞
j�0 |πj | < ∞ and

Zt �
∞∑
j�0

πjXt−j for all t.

Invertibility is equivalent to the condition

θ(z) � 1 + θ1z+ · · · + θqz
q �� 0 for all |z| ≤ 1.

Interchanging the roles of the AR and MA polynomials, we find from (3.1.7) that
the sequence {πj } is determined by the equations

πj +
q∑

k�1

θkπj−k � −φj , j � 0, 1, . . . , (3.1.8)

where φ0 :� −1, φj :� 0 for j > p, and πj :� 0 for j < 0.

Example 3.1.1 An ARMA(1,1) process

Consider the ARMA(1,1) process {Xt} satisfying the equations

Xt − .5Xt−1 � Zt + .4Zt−1, {Zt} ∼ WN
(
0, σ 2

)
. (3.1.9)

Since the autoregressive polynomial φ(z) � 1 − .5z has a zero at z � 2, which is
located outside the unit circle, we conclude from (3.1.4) and (3.1.6) that there exists
a unique ARMA process satisfying (3.1.9) that is also causal. The coefficients {ψj }
in the MA(∞) representation of {Xt} are found directly from (3.1.7):

ψ0 � 1,

ψ1 � .4 + .5,

ψ2 � .5(.4 + .5),

ψj � .5j−1(.4 + .5), j � 1, 2, . . . .

The MA polynomial θ(z) � 1 + .4z has a zero at z � −1/.4 � −2.5, which is also
located outside the unit circle. This implies that {Xt} is invertible with coefficients
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{πj } given by (see (3.1.8))

π0 � 1,

π1 � −(.4 + .5),

π2 � −(.4 + .5)(−.4),
πj � −(.4 + .5)(−.4)j−1, j � 1, 2, . . . .

(A direct derivation of these formulas for {ψj } and {πj } was given in Section 2.3
without appealing to the recursions (3.1.7) and (3.1.8).)

Example 3.1.2 An AR(2) process

Let {Xt} be the AR(2) process

Xt � .7Xt−1 − .1Xt−2 + Zt, {Zt} ∼ WN
(
0, σ 2

)
.

The autoregressive polynomial for this process has the factorization φ(z) � 1− .7z+
.1z2 � (1 − .5z)(1 − .2z), and is therefore zero at z � 2 and z � 5. Since these
zeros lie outside the unit circle, we conclude that {Xt} is a causal AR(2) process with
coefficients {ψj } given by

ψ0 � 1,

ψ1 � .7,

ψ2 � .72 − .1,

ψj � .7ψj−1 − .1ψj−2, j � 2, 3, . . . .

While it is a simple matter to calculate ψj numerically for any j , it is possible also
to give an explicit solution of these difference equations using the theory of linear
difference equations (see TSTM, Section 3.6).

The option Model>Specify of the program ITSM allows the entry of any causal
ARMA(p, q) model with p < 28 and q < 28. This option contains a causality check
and will immediately let you know if the entered model is noncausal. (A causal model
can be obtained by setting all the AR coefficients equal to .001.) Once a causal model
has been entered, the coefficients ψj in the MA(∞) representation of the process can
be computed by selecting Model>AR/MA Infinity. This option will also compute
the AR(∞) coefficients πj , provided that the model is invertible.

Example 3.1.3 An ARMA(2,1) process

Consider the ARMA(2,1) process defined by the equations

Xt − .75Xt−1 + .5625Xt−2 � Zt + 1.25Zt−1, {Zt} ∼ WN
(
0, σ 2

)
.
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The AR polynomial φ(z) � 1 − .75z + .5625z2 has zeros at z � 2
(
1 ± i

√
3
)
/3,

which lie outside the unit circle. The process is therefore causal. On the other hand,
the MA polynomial θ(z) � 1 + 1.25z has a zero at z � −.8, and hence {Xt} is not
invertible.

Remark 1. It should be noted that causality and invertibility are properties not of
{Xt} alone, but rather of the relationship between the two processes {Xt} and {Zt}
appearing in the defining ARMA equations (3.1.1).

Remark 2. If {Xt} is an ARMA process defined by φ(B)Xt � θ(B)Zt , where
θ(z) �� 0 if |z| � 1, then it is always possible (see TSTM, p. 127) to find polynomials
φ̃(z) and θ̃ (z) and a white noise sequence {Wt} such that φ̃(B)Xt � θ̃ (B)Wt and θ̃ (z)
and φ̃(z) are nonzero for |z| ≤ 1. However, if the original white noise sequence {Zt}
is iid, then the new white noise sequence will not be iid unless {Zt} is Gaussian.

In view of the preceding remark, we will focus our attention principally on causal
and invertible ARMA processes.

3.2 The ACF and PACF of an ARMA(p,q) Process

In this section we discuss three methods for computing the autocovariance function
γ (·) of a causal ARMA process {Xt}. The autocorrelation function is readily found
from the ACVF on dividing by γ (0). The partial autocorrelation function (PACF) is
also found from the function γ (·).

3.2.1 Calculation of the ACVF

First we determine the ACVF γ (·) of the causal ARMA(p, q) process defined by

φ(B)Xt � θ(B)Zt , {Zt} ∼ WN
(
0, σ 2

)
, (3.2.1)

where φ(z) � 1 − φ1z − · · · − φpz
p and θ(z) � 1 + θ1z + · · · + θqz

q . The causality
assumption implies that

Xt �
∞∑
j�0

ψjZt−j , (3.2.2)

where
∑∞

j�0 ψjz
j � θ(z)/φ(z), |z| ≤ 1. The calculation of the sequence {ψj } was

discussed in Section 3.1.
First Method. From Proposition 2.2.1 and the representation (3.2.2), we obtain

γ (h) � E(Xt+hXt) � σ 2
∞∑
j�0

ψjψj+|h|. (3.2.3)
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Example 3.2.1 The ARMA(1,1) process

Substituting from (2.3.3) into (3.2.3), we find that the ACVF of the process defined
by

Xt − φXt−1 � Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
, (3.2.4)

with |φ| < 1 is given by

γ (0) � σ 2
∞∑
j�0

ψ2
j

� σ 2

[
1 + (θ + φ)2

∞∑
j�0

φ2j

]

� σ 2

[
1 + (θ + φ)2

1 − φ2

]
,

γ (1) � σ 2
∞∑
j�0

ψj+1ψj

� σ 2

[
θ + φ + (θ + φ)2φ

∞∑
j�0

φ2j

]

� σ 2

[
θ + φ + (θ + φ)2φ

1 − φ2

]
,

and

γ (h) � φh−1γ (1), h ≥ 2.

Example 3.2.2 The MA(q) process

For the process

Xt � Zt + θ1Zt−1 + · · · + θqZt−q, {Zt} ∼ WN
(
0, σ 2

)
,

equation (3.2.3) immediately gives the result

γ (h) �


σ 2

q−|h|∑
j�0

θj θj+|h|, if |h| ≤ q,

0, if |h| > q,

where θ0 is defined to be 1. The ACVF of the MA(q) process thus has the distinctive
feature of vanishing at lags greater than q. Data for which the sample ACVF is
small for lags greater than q therefore suggest that an appropriate model might be a
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moving average of order q (or less). Recall from Proposition 2.1.1 that every zero-
mean stationary process with correlations vanishing at lags greater than q can be
represented as a moving-average process of order q or less.

Second Method. If we multiply each side of the equations

Xt − φ1Xt−1 − · · · − φpXt−p � Zt + θ1Zt−1 + · · · + θqZt−q,

by Xt−k, k � 0, 1, 2, . . . , and take expectations on each side, we find that

γ (k)− φ1γ (k − 1)− · · · − φpγ (k − p) � σ 2
∞∑
j�0

θk+jψj , 0 ≤ k < m, (3.2.5)

and

γ (k)− φ1γ (k − 1)− · · · − φpγ (k − p) � 0, k ≥ m, (3.2.6)

wherem � max(p, q+1),ψj :� 0 for j < 0, θ0 :� 1, and θj :� 0 for j /∈ {0, . . . , q}.
In calculating the right-hand side of (3.2.5) we have made use of the expansion (3.2.2).
Equations (3.2.6) are a set of homogeneous linear difference equations with constant
coefficients, for which the solution is well known (see, e.g., TSTM, Section 3.6) to
be of the form

γ (h) � α1ξ
−h
1 + α2ξ

−h
2 + · · · + αpξ

−h
p , h ≥ m− p, (3.2.7)

where ξ1, . . . , ξp are the roots (assumed to be distinct) of the equation φ(z) � 0, and
α1, . . . , αp are arbitrary constants. (For further details, and for the treatment of the case
where the roots are not distinct, see TSTM, Section 3.6.) Of course, we are looking for
the solution of (3.2.6) that also satisfies (3.2.5). We therefore substitute the solution
(3.2.7) into (3.2.5) to obtain a set of m linear equations that then uniquely determine
the constants α1, . . . , αp and the m− p autocovariances γ (h), 0 ≤ h < m− p.

Example 3.2.3 The ARMA(1,1) process

For the causal ARMA(1,1) process defined in Example 3.2.1, equations (3.2.5) are

γ (0)− φγ (1) � σ 2(1 + θ(θ + φ)) (3.2.8)

and

γ (1)− φγ (0) � σ 2θ. (3.2.9)

Equation (3.2.6) takes the form

γ (k)− φγ (k − 1) � 0, k ≥ 2. (3.2.10)

The solution of (3.2.10) is

γ (h) � αφh, h ≥ 1.
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Substituting this expression for γ (h) into the two preceding equations (3.2.8) and
(3.2.9) gives two linear equations for α and the unknown autocovariance γ (0). These
equations are easily solved, giving the autocovariances already found for this process
in Example 3.2.1.

Example 3.2.4 The general AR(2) process

For the causal AR(2) process defined by(
1 − ξ−1

1 B
) (

1 − ξ−1
2 B

)
Xt � Zt, |ξ1|, |ξ2| > 1, ξ1 �� ξ2,

we easily find from (3.2.7) and (3.2.5) using the relations

φ1 � ξ−1
1 + ξ−1

2

and

φ2 � −ξ−1
1 ξ−1

2

that

γ (h) � σ 2ξ 2
1 ξ

2
2

(ξ1ξ2 − 1)(ξ2 − ξ1)

[
(ξ 2

1 − 1)−1ξ 1−h
1 − (ξ 2

2 − 1)−1ξ 1−h
2

]
. (3.2.11)

Figures 3.1–3.4 illustrate some of the possible forms of γ (·) for different values of ξ1

and ξ2. Notice that in the case of complex conjugate roots ξ1 � reiθ and ξ2 � re−iθ ,
0 < θ < π , we can write (3.2.11) in the more illuminating form

γ (h) � σ 2r4 · r−h sin(hθ + ψ)

(r2 − 1)(r4 − 2r2 cos 2θ + 1) sin θ
, (3.2.12)

where

tanψ � r2 + 1
r2 − 1

tan θ (3.2.13)

and cosψ has the same sign as cos θ . Thus in this case γ (·) has the form of a damped
sinusoidal function with damping factor r−1 and period 2π/θ . If the roots are close
to the unit circle, then r is close to 1, the damping is slow, and we obtain a nearly
sinusoidal autocovariance function.

Third Method. The autocovariances can also be found by solving the first p + 1
equations of (3.2.5) and (3.2.6) for γ (0) . . . , γ (p) and then using the subsequent
equations to solve successively for γ (p + 1), γ (p + 2), . . . . This is an especially
convenient method for numerical determination of the autocovariances γ (h) and is
used in the option Model>ACF/PACF>Model of the program ITSM.

Example 3.2.5 Consider again the causal ARMA(1,1) process of Example 3.2.1. To apply the third
method we simply solve (3.2.8) and (3.2.9) for γ (0) and γ (1). Then γ (2), γ (3), . . .
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Figure 3-1
The model ACF of the AR(2)

series of Example 3.2.4
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Figure 3-2
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Figure 3-3
The model ACF of
the AR(2) series of

Example 3.2.4 with
ξ1 � −10/9 and ξ2 � 2. Lag 
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Figure 3-4
The model ACF of the AR(2)

series of Example 3.2.4
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can be found successively from (3.2.10). It is easy to check that this procedure gives
the same results as those obtained in Examples 3.2.1 and 3.2.3.

3.2.2 The Autocorrelation Function

Recall that the ACF of an ARMA process {Xt} is the function ρ(·) found immediately
from the ACVF γ (·) as

ρ(h) � γ (h)

γ (0)
.

Likewise, for any set of observations {x1, . . . , xn}, the sample ACF ρ̂(·) is computed
as

ρ̂(h) � γ̂ (h)

γ̂ (0)
.

The Sample ACF of an MA(q) Series. Given observations {x1, . . . , xn} of a time
series, one approach to the fitting of a model to the data is to match the sample ACF
of the data with the ACF of the model. In particular, if the sample ACF ρ̂(h) is sig-
nificantly different from zero for 0 ≤ h ≤ q and negligible for h > q, Example
3.2.2 suggests that an MA(q) model might provide a good representation of the data.
In order to apply this criterion we need to take into account the random variation
expected in the sample autocorrelation function before we can classify ACF values
as “negligible.” To resolve this problem we can use Bartlett’s formula (Section 2.4),
which implies that for a large sample of size n from an MA(q) process, the sample
ACF values at lags greater than q are approximately normally distributed with means
0 and varianceswhh/n � (

1+2ρ2(1)+· · ·+2ρ2(q)
)
/n. This means that if the sample

is from an MA(q) process and if h > q, then ρ̂(h) should fall between the bounds
±1.96

√
whh/nwith probability approximately 0.95. In practice we frequently use the

more stringent values ±1.96/
√
n as the bounds between which sample autocovari-

ances are considered “negligible.” A more effective and systematic approach to the
problem of model selection, which also applies to ARMA(p, q) models with p > 0
and q > 0, will be discussed in Section 5.5.

3.2.3 The Partial Autocorrelation Function

The partial autocorrelation function (PACF) of an ARMA process {Xt} is the
function α(·) defined by the equations

α(0) � 1

and

α(h) � φhh, h ≥ 1,
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where φhh is the last component of

φh � −1
h γh, (3.2.14)

h � [γ (i − j)]hi,j�1, and γh � [γ (1), γ (2), . . . , γ (h)]′.
For any set of observations {x1, . . . , xn}with xi �� xj for some i and j , the sample

PACF α̂(h) is given by

α̂(0) � 1

and

α̂(h) � φ̂hh, h ≥ 1,

where φ̂hh is the last component of

φ̂h � ̂−1
h γ̂h. (3.2.15)

We show in the next example that the PACF of a causal AR(p) process is zero for
lags greater than p. Both sample and model partial autocorrelation functions can be
computed numerically using the program ITSM. Algebraic calculation of the PACF
is quite complicated except when q is zero or p and q are both small.

It can be shown (TSTM, p. 171) that φhh is the correlation between the prediction
errors Xh − P(Xh|X1, . . . , Xh−1) and X0 − P(X0|X1, . . . , Xh−1).

Example 3.2.6 The PACF of an AR(p) process

For the causal AR(p) process defined by

Xt − φ1Xt−1 − · · · − φpXt−p � Zt, {Zt} ∼ WN
(
0, σ 2

)
,

we know (Problem 2.15) that for h ≥ p the best linear predictor of Xh+1 in terms of
1, X1, . . . , Xh is

X̂h+1 � φ1Xh + φ2Xh−1 + · · · + φpXh+1−p.

Since the coefficient φhh of X1 is φp if h � p and 0 if h > p, we conclude that the
PACF α(·) of the process {Xt} has the properties

α(p) � φp

and

α(h) � 0 for h > p.

For h < p the values of α(h) can easily be computed from (3.2.14). For any
specified ARMA model the PACF can be evaluated numerically using the option
Model>ACF/PACF>Model of the program ITSM.
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Example 3.2.7 The PACF of an MA(1) process

For the MA(1) process, it can be shown from (3.2.14) (see Problem 3.12) that the
PACF at lag h is

α(h) � φhh � −(−θ)h/ (1 + θ 2 + · · · + θ 2h
)
.

The Sample PACF of an AR(p) Series. If {Xt} is an AR(p) series, then the sample
PACF based on observations {x1, . . . , xn} should reflect (with sampling variation) the
properties of the PACF itself. In particular, if the sample PACF α̂(h) is significantly
different from zero for 0 ≤ h ≤ p and negligible for h > p, Example 3.2.6 suggests
that an AR(p) model might provide a good representation of the data. To decide what
is meant by “negligible” we can use the result that for an AR(p) process the sample
PACF values at lags greater than p are approximately independentN(0, 1/n) random
variables. This means that roughly 95% of the sample PACF values beyond lag p

should fall within the bounds ±1.96/
√
n. If we observe a sample PACF satisfying

|α̂(h)| > 1.96/
√
n for 0 ≤ h ≤ p and |α̂(h)| < 1.96/

√
n for h > p, this suggests an

AR(p) model for the data. For a more systematic approach to model selection, see
Section 5.5.

3.2.4 Examples

Example 3.2.8 The time series plotted in Figure 3.5 consists of 57 consecutive daily overshorts from
an underground gasoline tank at a filling station in Colorado. If yt is the measured
amount of fuel in the tank at the end of the t th day and at is the measured amount
sold minus the amount delivered during the course of the t th day, then the overshort
at the end of day t is defined as xt � yt − yt−1 + at . Due to the error in measuring
the current amount of fuel in the tank, the amount sold, and the amount delivered
to the station, we view yt , at , and xt as observed values from some set of random
variables Yt , At , and Xt for t � 1, . . . , 57. (In the absence of any measurement error
and any leak in the tank, each xt would be zero.) The data and their ACF are plotted
in Figures 3.5 and 3.6. To check the plausibility of an MA(1) model, the bounds
±1.96

(
1 + 2ρ̂2(1)

)1/2
/n1/2 are also plotted in Figure 3.6. Since ρ̂(h) is well within

these bounds for h > 1, the data appear to be compatible with the model

Xt � µ+ Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
. (3.2.16)

The mean µ may be estimated by the sample mean x̄57 � −4.035, and the parameters
θ, σ 2 may be estimated by equating the sample ACVF with the model ACVF at lags
0 and 1, and solving the resulting equations for θ and σ 2. This estimation procedure
is known as the method of moments, and in this case gives the equations

(1 + θ 2)σ 2 � γ̂ (0) � 3415.72,

θσ 2 � γ̂ (1) � −1719.95.
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Figure 3-5
Time series of
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Using the approximate solution θ � −1 and σ 2 � 1708, we obtain the noninvertible
MA(1) model

Xt � −4.035 + Zt − Zt−1, {Zt} ∼ WN(0, 1708).

Typically, in time series modeling we have little or no knowledge of the underlying
physical mechanism generating the data, and the choice of a suitable class of models

Figure 3-6
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is entirely data driven. For the time series of overshorts, the data, through the graph
of the ACF, lead us to the MA(1) model. Alternatively, we can attempt to model the
mechanism generating the time series of overshorts using a structural model. As we
will see, the structural model formulation leads us again to the MA(1) model. In the
structural model setup, write Yt , the observed amount of fuel in the tank at time t , as

Yt � y∗
t + Ut, (3.2.17)

where y∗
t is the true (or actual) amount of fuel in the tank at time t (not to be confused

with yt above) and Ut is the resulting measurement error. The variable y∗
t is an ide-

alized quantity that in principle cannot be observed even with the most sophisticated
measurement devices. Similarly, we assume that

At � a∗t + Vt, (3.2.18)

where a∗t is the actual amount of fuel sold minus the actual amount delivered during
day t , and Vt is the associated measurement error. We further assume that {Ut} ∼
WN

(
0, σ 2

U

)
, {Vt} ∼ WN

(
0, σ 2

V

)
, and that the two sequences {Ut} and {Vt} are uncor-

related with one another (E(UtVs) � 0 for all s and t). If the change of level per day
due to leakage is µ gallons (µ < 0 indicates leakage), then

y∗
t � µ+ y∗

t−1 − a∗t . (3.2.19)

This equation relates the actual amounts of fuel in the tank at the end of days t and
t − 1, adjusted for the actual amounts that have been sold and delivered during the
day. Using (3.2.17)–(3.2.19), the model for the time series of overshorts is given by

Xt � Yt − Yt−1 + At � µ+ Ut − Ut−1 + Vt .

This model is stationary and 1-correlated, since

EXt � E(µ+ Ut − Ut−1 + Vt) � µ

and

γ (h) � E[(Xt+h − µ)(Xt − µ)]

� E[(Ut+h − Ut+h−1 + Vt+h)(Ut − Ut−1 + Vt)]

�


2σ 2

U + σ 2
V , if h � 0,

−σ 2
U , if |h| � 1,

0, otherwise.

It follows from Proposition 2.1.1 that {Xt} is the MA(1) model (3.2.16) with

ρ(1) � θ1

1 + θ 2
1

� −σ 2
U

2σ 2
U + σ 2

V

.

From this equation we see that the measurement error associated with the adjustment
{At} is zero (i.e., σ 2

V � 0) if and only if ρ(1) � −.5 or, equivalently, if and only
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if θ1 � −1. From the analysis above, the moment estimator of θ1 for the overshort
data is in fact −1, so that we conclude that there is relatively little measurement error
associated with the amount of fuel sold and delivered.

We shall return to a more general discussion of structural models in Chap-
ter 8.

Example 3.2.9 The sunspot numbers

Figure 3.7 shows the sample PACF of the sunspot numbers S1, . . . , S100 (for the years
1770 − 1869) as obtained from ITSM by opening the project SUNSPOTS.TSM and
clicking on the second yellow button at the top of the screen. The graph also shows the
bounds ±1.96/

√
100. The fact that all of the PACF values beyond lag 2 fall within the

bounds suggests the possible suitability of an AR(2) model for the mean-corrected
data set Xt � St − 46.93. One simple way to estimate the parameters φ1, φ2, and σ 2

of such a model is to require that the ACVF of the model at lags 0, 1, and 2 should
match the sample ACVF at those lags. Substituting the sample ACVF values

γ̂ (0) � 1382.2, γ̂ (1) � 1114.4, γ̂ (2) � 591.73,

for γ (0), γ (1), and γ (2) in the first three equations of (3.2.5) and (3.2.6) and solving
for φ1, φ2, and σ 2 gives the fitted model

Xt − 1.318Xt−1 + 0.634Xt−2 � Zt, {Zt} ∼ WN(0, 289.2). (3.2.20)

(This method of model fitting is called Yule–Walker estimation and will be discussed
more fully in Section 5.1.1.)
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3.3 Forecasting ARMA Processes

The innovations algorithm (see Section 2.5.2) provided us with a recursive method
for forecasting second-order zero-mean processes that are not necessarily stationary.
For the causal ARMA process

φ(B)Xt � θ(B)Zt , {Zt} ∼ WN
(
0, σ 2

)
,

it is possible to simplify the application of the algorithm drastically. The idea is to
apply it not to the process {Xt} itself, but to the transformed process (cf. Ansley, 1979){

Wt � σ−1Xt, t � 1, . . . , m,

Wt � σ−1φ(B)Xt, t > m,
(3.3.1)

where

m � max(p, q). (3.3.2)

For notational convenience we define θ0 :� 1 and θj :� 0 for j > q. We shall also
assume that p ≥ 1 and q ≥ 1. (There is no loss of generality in these assumptions,
since in the analysis that follows we may take any of the coefficients φi and θi to be
zero.)

The autocovariance function γX(·) of {Xt} can easily be computed using any of
the methods described in Section 3.2.1. The autocovariances κ(i, j) � E(WiWj),
i, j ≥ 1, are then found from

κ(i, j) �



σ−2γX(i − j), 1 ≤ i, j ≤ m

σ−2

[
γX(i − j)−

p∑
r�1

φrγX(r − |i − j |)
]
, min(i, j) ≤ m < max(i, j) ≤ 2m,

q∑
r�0

θrθr+|i−j |, min(i, j) > m,

0, otherwise.

(3.3.3)

Applying the innovations algorithm to the process {Wt} we obtain
Ŵn+1 �

n∑
j�1

θnj (Wn+1−j − Ŵn+1−j ), 1 ≤ n < m,

Ŵn+1 �
q∑

j�1

θnj (Wn+1−j − Ŵn+1−j ), n ≥ m,

(3.3.4)

where the coefficients θnj and the mean squared errors rn � E
(
Wn+1 − Ŵn+1

)2
are

found recursively from the innovations algorithm with κ defined as in (3.3.3). The
notable feature of the predictors (3.3.4) is the vanishing of θnj when both n ≥ m and
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j > q. This is a consequence of the innovations algorithm and the fact that κ(r, s) � 0
if r > m and |r − s| > q.

Observe now that equations (3.3.1) allow each Xn, n ≥ 1, to be written as a linear
combination of Wj , 1 ≤ j ≤ n, and, conversely, each Wn, n ≥ 1, to be written as a
linear combination of Xj , 1 ≤ j ≤ n. This means that the best linear predictor of any
random variable Y in terms of {1, X1, . . . , Xn} is the same as the best linear predictor
of Y in terms of {1,W1, . . . ,Wn}. We shall denote this predictor by PnY . In particular,
the one-step predictors of Wn+1 and Xn+1 are given by

Ŵn+1 � PnWn+1

and

X̂n+1 � PnXn+1.

Using the linearity of Pn and equations (3.3.1) we see that Ŵt � σ−1X̂t , t � 1, . . . , m,

Ŵt � σ−1
[
X̂t − φ1Xt−1 − · · · − φpXt−p

]
, t > m,

(3.3.5)

which, together with (3.3.1), shows that

Xt − X̂t � σ
[
Wt − Ŵt

]
for all t ≥ 1. (3.3.6)

Replacing
(
Wj − Ŵj

)
by σ−1

(
Xj − X̂j

)
in (3.3.3) and then substituting into (3.3.4),

we finally obtain

X̂n+1 �



n∑
j�1

θnj

(
Xn+1−j − X̂n+1−j

)
, 1 ≤ n < m,

φ1Xn + · · · + φpXn+1−p +
q∑

j�1

θnj

(
Xn+1−j − X̂n+1−j

)
, n ≥ m,

(3.3.7)

and

E
(
Xn+1 − X̂n+1

)2
� σ 2E

(
Wn+1 − Ŵn+1

)2
� σ 2rn, (3.3.8)

where θnj and rn are found from the innovations algorithm with κ as in (3.3.3).
Equations (3.3.7) determine the one-step predictors X̂2, X̂3, . . . recursively.

Remark 1. It can be shown (see TSTM, Problem 5.6) that if {Xt} is invertible, then
as n → ∞,

E
(
Xn − X̂n − Zn

)2
→ 0,

θnj → θj , j � 1, . . . , q,
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and

rn → 1.

Algebraic calculation of the coefficients θnj and rn is not feasible except for very sim-
ple models, such as those considered in the following examples. However, numerical
implementation of the recursions is quite straightforward and is used to compute
predictors in the program ITSM.

Example 3.3.1 Prediction of an AR(p) process

Applying (3.3.7) to the ARMA(p, 1) process with θ1 � 0, we easily find that

X̂n+1 � φ1Xn + · · · + φpXn+1−p, n ≥ p.

Example 3.3.2 Prediction of an MA(q) process

Applying (3.3.7) to the ARMA(1, q) process with φ1 � 0 gives

X̂n+1 �
min(n,q)∑
j�1

θnj

(
Xn+1−j − X̂n+1−j

)
, n ≥ 1,

where the coefficients θnj are found by applying the innovations algorithm to the co-
variances κ(i, j) defined in (3.3.3). Since in this case the processes {Xt} and {σ−1Wt}
are identical, these covariances are simply

κ(i, j) � σ−2γX(i − j) �
q−|i−j |∑
r�0

θrθr+|i−j |.

Example 3.3.3 Prediction of an ARMA(1,1) process

If

Xt − φXt−1 � Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
,

and |φ| < 1, then equations (3.3.7) reduce to the single equation

X̂n+1 � φXn + θn1(Xn − X̂n), n ≥ 1.

To compute θn1 we first use Example 3.2.1 to find thatγX(0)�σ 2
(
1 + 2θφ + θ 2

)
/
(
1−

φ2
)
. Substituting in (3.3.3) then gives, for i, j ≥ 1,

κ(i, j) �



(
1 + 2θφ + θ 2

)
/
(
1 − φ2

)
, i � j � 1,

1 + θ 2, i � j ≥ 2,

θ, |i − j | � 1, i ≥ 1,

0, otherwise.
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With these values of κ(i, j), the recursions of the innovations algorithm reduce to

r0 �
(
1 + 2θφ + θ 2

)
/
(
1 − φ2

)
,

θn1 � θ/rn−1, (3.3.9)

rn � 1 + θ 2 − θ 2/rn−1,

which can be solved quite explicitly (see Problem 3.13).

Example 3.3.4 Numerical prediction of an ARMA(2,3) process

In this example we illustrate the steps involved in numerical prediction of an
ARMA(2,3) process. Of course, these steps are shown for illustration only. The calcu-
lations are all carried out automatically by ITSM in the course of computing predictors
for any specified data set and ARMA model. The process we shall consider is the
ARMA process defined by the equations

Xt −Xt−1 + 0.24Xt−2 � Zt + 0.4Zt−1 + 0.2Zt−2 + 0.1Zt−3, (3.3.10)

where {Zt} ∼ WN(0, 1). Ten values of X1, . . . , X10 simulated by the program ITSM
are shown in Table 3.1. (These were produced using the option Model>Specify to
specify the order and parameters of the model and then Model>Simulate to generate
the series from the specified model.)

The first step is to compute the covariances γX(h), h � 0, 1, 2, which are easily
found from equations (3.2.5) with k � 0, 1, 2 to be

γX(0) � 7.17133, γX(1) � 6.44139, and γX(2) � 5.0603.

From (3.3.3) we find that the symmetric matrix K � [κ(i, j)]i,j�1,2,... is given by

K �



7.1713
6.4414 7.1713
5.0603 6.4414 7.1713
0.10 0.34 0.816 1.21

0 0.10 0.34 0.50 1.21
0 0 0.10 0.24 0.50 1.21
· 0 0 0.10 0.24 0.50 1.21
· · 0 0 0.10 0.24 0.50 1.21
· · · · · · · · ·


.

The next step is to solve the recursions of the innovations algorithm for θnj and
rn using these values for κ(i, j). Then

X̂n+1 �



n∑
j�1

θnj

(
Xn+1−j − X̂n+1−j

)
, n � 1, 2,

Xn − 0.24Xn−1 +
3∑

j�1

θnj

(
Xn+1−j − X̂n+1−j

)
, n � 3, 4, . . . ,
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and

E
(
Xn+1 − X̂n+1

)2
� σ 2rn � rn.

The results are shown in Table 3.1.

h-Step Prediction of an ARMA(p, q) Process
As in Section 2.5, we use PnY to denote the best linear predictor of Y in terms of
X1, . . . , Xn (which, as pointed out after (3.3.4), is the same as the best linear predictor
of Y in terms of W1, . . . ,Wn). Then from (2.5.30) we have

PnWn+h �
n+h−1∑
j�h

θn+h−1,j

(
Wn+h−j − Ŵn+h−j

)
� σ 2

n+h−1∑
j�h

θn+h−1,j

(
Xn+h−j − X̂n+h−j

)
.

Using this result and applying the operator Pn to each side of equations (3.3.1), we
conclude that the h-step predictors PnXn+h satisfy

PnXn+h �



n+h−1∑
j�h

θn+h−1,j

(
Xn+h−j − X̂n+h−j

)
, 1 ≤ h ≤ m− n,

p∑
i�1

φiPnXn+h−i +
n+h−1∑
j�h

θn+h−1,j

(
Xn+h−j − X̂n+h−j

)
, h > m− n.

(3.3.11)

If, as is almost always the case, n > m � max(p, q), then for all h ≥ 1,

PnXn+h �
p∑
i�1

φiPnXn+h−i +
q∑

j�h
θn+h−1,j

(
Xn+h−j − X̂n+h−j

)
. (3.3.12)

Once the predictors X̂1, . . . X̂n have been computed from (3.3.7), it is a straightforward
calculation, with n fixed, to determine the predictors PnXn+1, PnXn+2, PnXn+3, . . .

Table 3.1 X̂n+1 for the ARMA(2,3) Process of Example 3.3.4.

n Xn+1 rn θn1 θn2 θn3 X̂n+1

0 1.704 7.1713 0
1 0.527 1.3856 0.8982 1.5305
2 1.041 1.0057 1.3685 0.7056 −0.1710
3 0.942 1.0019 0.4008 0.1806 0.0139 1.2428
4 0.555 1.0019 0.3998 0.2020 0.0732 0.7443
5 −1.002 1.0005 0.3992 0.1995 0.0994 0.3138
6 −0.585 1.0000 0.4000 0.1997 0.0998 −1.7293
7 0.010 1.0000 0.4000 0.2000 0.0998 −0.1688
8 −0.638 1.0000 0.4000 0.2000 0.0999 0.3193
9 0.525 1.0000 0.4000 0.2000 0.1000 −0.8731

10 1.0000 0.4000 0.2000 0.1000 1.0638
11 1.0000 0.4000 0.2000 0.1000
12 1.0000 0.4000 0.2000 0.1000
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recursively from (3.3.12) (or (3.3.11) if n ≤ m). The calculations are performed
automatically in the Forecasting>ARMA option of the program ITSM.

Example 3.3.5 h-step prediction of an ARMA(2,3) process

To compute h-step predictors, h � 1, . . . , 10, for the data of Example 3.3.4 and
the model (3.3.10), open the project E334.TSM in ITSM and enter the model using
the option Model>Specify. Then select Forecasting>ARMA and specify 10 for the
number of forecasts required. You will notice that the white noise variance is au-
tomatically set by ITSM to an estimate based on the sample. To retain the model
value of 1, you must reset the white noise variance to this value. Then click OK and
you will see a graph of the original series with the ten predicted values appended.
If you right-click on the graph and select Info, you will see the numerical results
shown in the following table as well as prediction bounds based on the assumption
that the series is Gaussian. (Prediction bounds are discussed in the last paragraph of
this chapter.) The mean squared errors are calculated as described below. Notice how
the predictors converge fairly rapidly to the mean of the process (i.e., zero) as the lead
time h increases. Correspondingly, the one-step mean squared error increases from
the white noise variance (i.e., 1) at h � 1 to the variance of Xt (i.e., 7.1713), which
is virtually reached at h � 10.

The Mean Squared Error of PnXn+h
The mean squared error of PnXn+h is easily computed by ITSM from the formula

σ 2
n (h) :� E(Xn+h − PnXn+h)2 �

h−1∑
j�0

(
j∑

r�0

χrθn+h−r−1,j−r

)2

vn+h−j−1, (3.3.13)

Table 3.2 h-step predictors for the ARMA(2,3)
Series of Example 3.3.4.

h P10X10+h
√
MSE

1 1.0638 1.0000
2 1.1217 1.7205
3 1.0062 2.1931
4 0.7370 2.4643
5 0.4955 2.5902
6 0.3186 2.6434
7 0.1997 2.6648
8 0.1232 2.6730
9 0.0753 2.6761

10 0.0457 2.6773
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where the coefficients χj are computed recursively from the equations χ0 � 1 and

χj �
min(p,j)∑
k�1

φkχj−k, j � 1, 2, . . . . (3.3.14)

Example 3.3.6 h-step prediction of an ARMA(2,3) process

We now illustrate the use of (3.3.12) and (3.3.13) for the h-step predictors and their
mean squared errors by manually reproducing the output of ITSM shown in Table
3.2. From (3.3.12) and Table 3.1 we obtain

P10X12 �
2∑

i�1

φiP10X12−i +
3∑

j�2

θ11,j

(
X12−j − X̂12−j

)
� φ1X̂11 + φ2X10 + 0.2

(
X10 − X̂10

)
+ 0.1

(
X9 − X̂9

)
� 1.1217

and

P10X13 �
2∑

i�1

φiP10X13−i +
3∑

j�3

θ12,j

(
X13−j − X̂13−j

)
� φ1P10X12 + φ2X̂11 + 0.1

(
X10 − X̂10

)
� 1.0062.

For k > 13, P10Xk is easily found recursively from

P10Xk � φ1P10Xk−1 + φ2P10Xk−2.

To find the mean squared errors we use (3.3.13) with χ0 � 1, χ1 � φ1 � 1, and
χ2 � φ1χ1 + φ2 � 0.76. Using the values of θnj and vj (� rj ) in Table 3.1, we obtain

σ 2
10(2) � E(X12 − P10X12)

2 � 2.960

and

σ 2
10(3) � E(X13 − P10X13)

2 � 4.810,

in accordance with the results shown in Table 3.2.

Large-Sample Approximations
Assuming as usual that the ARMA(p, q) process defined by φ(B)Xt � θ(B)Zt ,
{Zt} ∼ WN

(
0, σ 2

)
, is causal and invertible, we have the representations

Xn+h �
∞∑
j�0

ψjZn+h−j (3.3.15)
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and

Zn+h � Xn+h +
∞∑
j�1

πjXn+h−j , (3.3.16)

where {ψj } and {πj } are uniquely determined by equations (3.1.7) and (3.1.8), respec-
tively. Let P̃nY denote the best (i.e., minimum mean squared error) approximation to
Y that is a linear combination or limit of linear combinations of Xt , −∞ < t ≤ n,
or equivalently (by (3.3.15) and (3.3.16)) of Zt , −∞ < t ≤ n. The properties of the
operator P̃n were discussed in Section 2.5.3. Applying P̃n to each side of equations
(3.3.15) and (3.3.16) gives

P̃nXn+h �
∞∑
j�h

ψjZn+h−j (3.3.17)

and

P̃nXn+h � −
∞∑
j�1

πj P̃nXn+h−j . (3.3.18)

For h � 1 the j th term on the right of (3.3.18) is just Xn+1−j . Once P̃nXn+1 has
been evaluated, P̃nXn+2 can then be computed from (3.3.18). The predictors P̃nXn+3,
P̃nXn+4, . . . can then be computed successively in the same way. Subtracting (3.3.17)
from (3.3.15) gives the h-step prediction error as

Xn+h − P̃nXn+h �
h−1∑
j�0

ψjZn+h−j ,

from which we see that the mean squared error is

σ̃ 2(h) � σ 2
h−1∑
j�0

ψ2
j . (3.3.19)

The predictors obtained in this way have the form

P̃nXn+h �
∞∑
j�0

cjXn−j . (3.3.20)

In practice, of course, we have only observations X1, . . . , Xn available, so we must
truncate the series (3.3.20) after n terms. The resulting predictor is a useful approx-
imation to PnXn+h if n is large and the coefficients cj converge to zero rapidly as j
increases. It can be shown that the mean squared error (3.3.19) of P̃nXn+h can also
be obtained by letting n → ∞ in the expression (3.3.13) for the mean squared error
of PnXn+h, so that σ̃ 2(h) is an easily calculated approximation to σ 2

n (h) for large n.
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Prediction Bounds for Gaussian Processes
If the ARMA process {Xt} is driven by Gaussian white noise (i.e., if {Zt} ∼
IID N

(
0, σ 2

)
), then for each h ≥ 1 the prediction error Xn+h − PnXn+h is normally

distributed with mean 0 and variance σ 2
n (h) given by (3.3.19).

Consequently, if41−α/2 denotes the (1−α/2) quantile of the standard normal dis-
tribution function, it follows thatXn+h lies between the boundsPnXn+h±41−α/2σn(h)

with probability (1−α). These bounds are therefore called (1−α) prediction bounds
for Xn+h.

Problems

3.1. Determine which of the following ARMA processes are causal and which of
them are invertible. (In each case {Zt} denotes white noise.)

a. Xt + 0.2Xt−1 − 0.48Xt−2 � Zt .

b. Xt + 1.9Xt−1 + 0.88Xt−2 � Zt + 0.2Zt−1 + 0.7Zt−2.

c. Xt + 0.6Xt−1 � Zt + 1.2Zt−1.

d. Xt + 1.8Xt−1 + 0.81Xt−2 � Zt .

e. Xt + 1.6Xt−1 � Zt − 0.4Zt−1 + 0.04Zt−2.

3.2. For those processes in Problem 3.1 that are causal, compute and graph their
ACF and PACF using the program ITSM.

3.3. For those processes in Problem 3.1 that are causal, compute the first six co-
efficients ψ0, ψ1, . . . , ψ5 in the causal representation Xt � ∑∞

j�0 ψjZt−j of
{Xt}.

3.4. Compute the ACF and PACF of the AR(2) process

Xt � .8Xt−2 + Zt, {Zt} ∼ WN
(
0, σ 2

)
.

3.5. Let {Yt} be the ARMA plus noise time series defined by

Yt � Xt +Wt,

where {Wt} ∼ WN
(
0, σ 2

w

)
, {Xt} is the ARMA(p, q) process satisfying

φ(B)Xt � θ(B)Zt , {Zt} ∼ WN
(
0, σ 2

z

)
,

and E(WsZt) � 0 for all s and t .

a. Show that {Yt} is stationary and find its autocovariance in terms of σ 2
W and

the ACVF of {Xt}.
b. Show that the process Ut :� φ(B)Yt is r-correlated, where r � max(p, q)

and hence, by Proposition 2.1.1, is an MA(r) process. Conclude that {Yt} is
an ARMA(p, r) process.



The Bartlett Press, Inc. brockwel 8 · i · 2002 1:59 p.m. Page 109

Problems 109

3.6. Show that the two MA(1) processes

Xt � Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
Yt � Z̃t + 1

θ
Z̃t−1, {Z̃t} ∼ WN

(
0, σ 2θ 2

)
,

where 0 < |θ | < 1, have the same autocovariance functions.

3.7. Suppose that {Xt} is the noninvertible MA(1) process

Xt � Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
,

where |θ | > 1. Define a new process {Wt} as

Wt �
∞∑
j�0

(−θ)−jXt−j

and show that {Wt} ∼ WN
(
0, σ 2

W

)
. Express σ 2

W in terms of θ and σ 2 and show
that {Xt} has the invertible representation (in terms of {Wt})

Xt � Wt + 1
θ
Wt−1.

3.8. Let {Xt} denote the unique stationary solution of the autoregressive equations

Xt � φXt−1 + Zt, t � 0,±1, . . . ,

where {Zt} ∼ WN
(
0, σ 2

)
and |φ| > 1. Then Xt is given by the expression

(2.2.11). Define the new sequence

Wt � Xt − 1
φ
Xt−1,

show that {Wt} ∼ WN
(
0, σ 2

W

)
, and express σ 2

W in terms of σ 2 and φ. These
calculations show that {Xt} is the (unique stationary) solution of the causal AR
equations

Xt � 1
φ
Xt−1 +Wt, t � 0,±1, . . . .

3.9. a. Calculate the autocovariance function γ (·) of the stationary time series

Yt � µ+ Zt + θ1Zt−1 + θ12Zt−12, {Zt} ∼ WN
(
0, σ 2

)
.

b. Use the program ITSM to compute the sample mean and sample autoco-
variances γ̂ (h), 0 ≤ h ≤ 20, of {∇∇12Xt}, where {Xt, t � 1, . . . , 72} is the
accidental deaths series DEATHS.TSM of Example 1.1.3.

c. By equating γ̂ (1), γ̂ (11), and γ̂ (12) from part (b) to γ (1), γ (11), and γ (12),
respectively, from part (a), find a model of the form defined in (a) to represent
{∇∇12Xt}.
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3.10. By matching the autocovariances and sample autocovariances at lags 0 and 1,
fit a model of the form

Xt − µ � φ(Xt−1 − µ)+ Zt, {Zt} ∼ WN
(
0, σ 2

)
,

to the data STRIKES.TSM of Example 1.1.6. Use the fitted model to compute
the best predictor of the number of strikes in 1981. Estimate the mean squared
error of your predictor and construct 95% prediction bounds for the number of
strikes in 1981 assuming that {Zt} ∼ iid N

(
0, σ 2

)
.

3.11. Show that the value at lag 2 of the partial ACF of the MA(1) process

Xt � Zt + θZt−1, t � 0,±1, . . . ,

where {Zt} ∼ WN
(
0, σ 2

)
, is

α(2) � −θ2/
(
1 + θ 2 + θ 4

)
.

3.12. For the MA(1) process of Problem 3.11, the best linear predictor of Xn+1 based
on X1, . . . , Xn is

X̂n+1 � φn,1Xn + · · · + φn,nX1,

where φn � (
φn1, . . . , φnn

)′
satisfies Rnφn � ρn (equation (2.5.23)). By sub-

stituting the appropriate correlations into Rn and ρn and solving the resulting
equations (starting with the last and working up), show that for 1 ≤ j < n,
φn,n−j � (−θ)−j(1 + θ2 + · · · + θ2j

)
φnn and hence that the PACF α(n) :�

φnn � −(−θ)n/(1 + θ 2 + · · · + θ 2n
)
.

3.13. The coefficients θnj and one-step mean squared errors vn � rnσ
2 for the general

causal ARMA(1,1) process in Example 3.3.3 can be found as follows:

a. Show that if yn :� rn/(rn − 1), then the last of equations (3.3.9) can be
rewritten in the form

yn � θ−2yn−1 + 1, n ≥ 1.

b. Deduce that yn � θ−2ny0+
∑n

j�1 θ
−2(j−1) and hence determine rn and θn1, n �

1, 2, . . . .

c. Evaluate the limits as n → ∞ of rn and θn1 in the two cases |θ | < 1 and
|θ | ≥ 1.




